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ABSTRACT

Planetary surface missions have greatly benefitted from intelligent systems capable of semi-auton-
omous navigation and surveying. However, instruments onboard these missions are not similarly
equipped with automated science analysis classifiers onboard rovers, which can further improve sci-
entific yield and autonomy. Here, we present both single- and multi-mineral autonomous classifiers
integrated using the results from a co-registered dual-band Raman spectrometer. This instrument con-
secutively irradiates the same spot size on the same sample using two excitation lasers of different
wavelengths (532 and 785 nm). We identify the presence of mineral groups: pyroxene, olivine, potas-
sium feldspar, quartz, mica, gypsum, and plagioclase, in 191 rocks. Theseminerals are among themajor
rock-forming mineral groups, so their presence or absence within a sample is key for understanding
rock composition and the environment in which it formed. We present machine learning methods used
to train classifiers and leverage the multiple modalities of the dual-band Raman spectrometer. When
testing on a novel sample set for single-mineral classification, we show accuracy scores up to 100%
(varying bymineral), with a total classification rate (all minerals) of 91%.When testing on a novel set of
samples for multi-mineral classification, we show accuracy scores up to 96%, with a total classification
rate of 73%.We end with several hypothesis tests demonstrating that dual-band Raman spectroscopy is
more robust and improves the scientific yield for mineral classification over single-band spectroscopy,
especially when combined with our multimodal neural network.

Keywords: Raman spectroscopy, mineralogy, autonomous classifier, multimodal machine
learning, dual-band Raman spectroscopy, sensor fusion

INTRODUCTION

Future lunar and martian rovers and lunar-suited astronauts
aim to navigate terrain using multimodal sensors and Intelligent
Data Understanding (IDU) software. As rovers are equipped with
more robust instruments and greater navigational autonomy
(Francis et al. 2017; Verma et al. 2023), there is a subsequent need
to develop systems capable of in situ data analysis for onboard
decision making. Raman spectrometers, like Mars 2020s Scan-
ning Habitable Environments with Raman and Luminescence
for Organics and Chemicals (SHERLOC) (Beegle et al. 2015),
SuperCam (Maurice et al. 2021;Wiens et al. 2021), andExoMars’
Raman Laser Spectrometer (RLS) (Rull et al. 2017) have been
deployed on Mars rovers to study mineral compositions and
detect organics. However, none of these instruments possess
onboard capabilities to autonomously identify mineral, organic,
or rock compositions. Instead, all data must be returned to Earth
and await confirmation for identified minerals and commands on
what to do next. This creates a significant bottleneck in scientific
decision making, the command cycle, and subsequent traverse

planning. To further improve data collection, a growing trend
is to use information frommultiple spectral techniques (for exam-
ple, Raman, NIR, Mid-IR, XRD, and LIBS) and imaging sources
to analyze rock and sediment samples on planetary surfaces. Our
research aims to demonstrate that machine learning methods that
combinemulti-laser excitation Raman spectra to classify minerals
in natural rock and sediment samples represent a step forward in
automated spectral classification for single- and multi-mineral
samples. Furthermore, we show end-to-end methods for model
selection and error mitigation.

Applications of Raman spectroscopy to mineral identifica-
tion have paved the way for autonomous mineral classification
of both single- and multi-mineral mixtures using Raman spectra
and machine learning. However, there are three knowledge gaps
that we will address: (1) the use of single-band Raman spectro-
meters vs. dual-band Raman spectrometers; (2) the use of either
synthetic mineral mixtures to train models or a small variety of
samples to test solutions to the multi-mineral mixture problem;
and (3) the use of more effective machine learning methods with
which to leverage dual-band Raman spectra. We also compare
key findings of previous studies to motivate our classifier devel-
opment with the current results.

We present a machine learning pipeline that inputs Raman
spectra from natural samples and outputs the likelihoods of
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various minerals present. We demonstrate that using a pipeline
of methods combining our dual-band Raman spectrometer,
data augmentation, averaging, normalization, early stopping
(Prechelt 1998), artificial neural networks (ANN), and multi-
modal deep learning (Ngiam et al. 2011)—in totality what we
call a multimodal neural network (MNN)—is superior to other
machine learning approaches using either linear regression or a
multi-layer perceptron and those which utilize only a single-
band Raman spectrometer. In the next section, we provide the
background pertinent to understanding the history, key findings,
parameters, and knowledge gaps we address with our study. In
the “Methods” section, we discuss methods used in our pipeline
from model input to output, which includes spectra preproces-
sing, classical machine learning algorithms, and our multimodal
neural network. We evaluate our models in the “Results”
section, demonstrating the advantages and robustness of our
MNN approach, resulting in a mean pure-mineral classification
rate of 91% and multi-mineral classification rate of 73%—each
accuracy varies by mineral. A series of hypothesis testing that
quantifies the statistical advantage of our MNN approach over
classical approaches is included.

BACKGROUND

Previous studies

Raman spectroscopy is a rapid, non-invasive spectral
approach to analyze minerals and potential biosignatures in natu-
ral rock and sediment geological samples, providing a unique fin-
gerprint of the material (Lewis and Edwards 2001). Autonomous
characterization of materials with Raman spectroscopy was first
used to discriminate various narcotics using a single-band 785 nm
Raman spectrometer, principal component analysis (PCA), and
machine learning (Ryder 2002; Howley et al. 2005). Similar tech-
niques have since been used to identify and grade prostatic
adenocarcinoma cell lines (Crow et al. 2005) and characterize
bacterial species (Xie et al. 2005). Methods used for autonomous
single-mineral classification, considering samples as homoge-
nous mixtures, with Raman spectroscopy and machine learning
have also been studied.

Freeman et al. (2008) presented a first derivative least-square
technique to characterize several feldspar end-members with
94% accuracy, using a single-band 532 nm Raman and the wave-
number range 150 to 1800 cm−1, noting that the range 2500 to
4000 cm−1 can be important for characterizing hydrated minerals.
Wang et al. (2006) concluded that most diagnostic mineral bands
are between 400 and 1300 cm−1 when using a 532 nm excitation
laser to analyze anhydrous and Mg-sulfates. Ishikawa and Gulick
(2013) used an 852 nm laser excitation Raman spectrometer of
130 spectra from their mineral library. Spectra from samples were
obtained without ambient light and the need for preparation, such
as grinding or pulverizing. Therefore, this approach enables the
analysis of samples in situ without moving or altering them. They
then tested the robustness of their classifier by usingmineral spec-
tra from the RRUFF library (Downs 2006), which were measured
using different Raman spectrometers with varying single-band
excitation lasers from 514 to 852 nm. Ishikawa andGulick’s auto-
mated mineral classifier was able to discriminate the six minerals
tested: mica, olivine, plagioclase, potassium feldspar, pyroxene,

and quartz, with up to 100% accuracy (varying by mineral)
and 83% total accuracy (among all minerals). They found an
Artificial Neural Network (ANN) to be more robust than a
decision tree and that including the background fluorescence
patterns improves classification accuracy. Before this study,
background fluorescence was generally viewed as background
noise and typically removed, while only diagnostic peaks were
used for identification.

To address the multi-mineral classification of heterogenous
mixtures, Lopez-Reyes et al. (2014) used multivariate analysis
models based on PCA, partial least-squares, and ANNs to show
a relationship between ANN output and mineral abundancies of
selected Ca-, Fe-, Na-, and Mg-sulfates in binary mixtures. They
used a laboratory version of the RLS aboard the 2018 ExoMars
mission (Rull et al. 2017), which uses a 532 nm excitation laser.
Their results showed that anANN can distinguish 17 sulfides with
100% accuracy. Any of those sulfates could be detected from a
simulated linear combination of their spectra with 100% accuracy
if at least 10% of that spectrum was present in the linear combi-
nation. Cochrane and Blacksberg (2015) presented a machine
learning approach to find an optimal linear combination of pure
mineral spectra to recreate a mixture of minerals with an F1-score
of 82%on a synthetic data set created from linear combinations of
pure mineral spectra. Berlanga et al. (2022) used a single-band
532 nm Raman spectrometer and a Convolutional Neural Net-
work (CNN) with 60 million trainable parameters to classify if
the minerals quartz, albite, microcline, biotite, and hornblende
are present on both a slab of granite and gabbro with an F1-score
of 99%.They found that theseminerals could be identifiedwith an
F1-score of 80–81%when half of the surface was covered in dust.

In this study, we improve autonomous multi-mineral classifi-
cation with Raman spectroscopy and machine learning by:
(1) leveraging a dual-band co-registered Raman spectrometer,
where previous approaches have only used single-band Raman
spectrometers; (2) using our library of dual-band Raman spectra
measured from 191 different rocks as a test set, instead of
approaches which used either linear combinations of pure mineral
spectra to simulate mixtures, several spectra of the same samples,
or a relatively small sample size; and (3) presenting a robust
ablation study, which is a method of experimentation that incre-
mentally removes/replaces individual parts of the classifier pipe-
line to evaluate their contribution. The results of the ablation study
warrant the benefits of more complex, modern, and novel neural
networkmethodswhile maintaining a low computation andmem-
ory resource overhead used during inference. Such methods can
be adopted by remote robotics for improved space exploration and
scientific yield, which is evident by a series of hypotheses testing
that compared our contributions to less sophisticated, more
antiquated approaches.

Dual-band Raman spectroscopy

Here, we introduce the co-registered, dual-band Raman
spectrometer we used, as developed by Spectra Solutions, Inc.
(SSI). The term “dual-band” refers to using two lasers at differ-
ent excitation wavelengths. The term “co-registered” refers to
consecutively irradiating the same spot on a sample. Thus, the
SSI instrument we used consecutively irradiates the same spot
on the same sample with two different excitation wavelengths
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(532 and 785 nm). The main benefits of such an instrument are:
(1) wavenumber bands of low signal-to-noise ratios in one laser
excitation can be supplemented by high signal-to-noise ratios in
another; (2) there is an intrinsic difference in background fluo-
rescence between the two excitation lasers that can be leveraged
by a classifier; and (3) each laser can explore a different wave-
number space and resolution. The first excitation laser has a
wavelength of 532 nm and a wavenumber range of 130–
4000 cm−1 at a resolution of 2.5 cm−1. The second excitation
laser has a wavelength of 785 nm and a wavenumber range of
190–2900 cm−1 at a resolution of 0.5 cm−1. Both excitation
lasers utilize a spot size of ∼50 μm.

Neural networks

For deployment, we developed source code in raw C��,
with no external dependencies; we demonstrated its functional-
ity in a previous paper (Johnsen et al. 2020). Python was used in
this study for easy visualization, access to libraries, portability,
and model development. We used the Python library Keras
(Chollet 2015) with TensorFlow (Abadi et al. 2015) for some
neural network implementations.

Each of our models is a form of an Artificial Neural Network
(ANN), where we input a spectrum that gets fed through the
ANN to learn latent features, which are used to output likeli-
hoods of each mineral being present in the spectrum and a rela-
tive measurement of confidence. We evaluate two classical
models for mineral classification: a Logistic Regression (LR),
such as that used by Cochrane and Blacksberg (2015), and a
Multi-Layer Perceptron (MLP), such as that used by Ishikawa
and Gulick (2013). LR takes a linear combination of the input
spectrum and passes it through the Sigmoid function, which
is bounded between 0 and 1. Two key benefits of LR are its
“explainability” due to the simple weights learned during train-
ing and the fact that fewmodel parameters needed to be executed
during run time. The disadvantage of LR is that it may not be
complex enough to learn the nonlinear relationship between
the spectrum and present minerals. An MLP can have a higher
complexity to facilitate learning more complex relationships but
comes at the cost of losing explainability and increasing comput-
ing and memory overhead. We compare an LR approach to an
MLP to see if the added overhead and loss in explainability are
worth the potential increase in accuracy. Note that the output of
an ANN is an arbitrary value between 0 and 1 and should not be
interpreted as a statistical probability or percentage of the min-
eral being present in the sample. Instead, it is more of a confi-
dence score, where a value closer to 1 means there is a higher
confidence that a mineral is present than a value closer to 0.

We then compare a third approach using an evolved form of
Multimodal Deep Learning (MDL) (Ngiam et al. 2011). Ngiam
introduced MDL with an example that combined both audio
and videomodalities for speech recognition. Restricted Boltzmann
machines (RBM) (Salakhutdinov 2007) refer to an architecture that
trains neural networkswithout needing to knowground truth labels
for input data (unsupervised learning). RBMs are used to learn sin-
gle modality features independently and are then used as feature
extractors to input into a downstream neural network that captures
cross-modality features used in classification—using the known
ground truth labels (supervised learning). We update MDL with

more state-of-the-art processes and specific methods for our appli-
cation, creating what we call a multimodal neural network (MNN),
as detailed in the “Methods: Multimodal neural network” section.

METHODS

Data collection
There are three data sets of samples for our studied Raman spectra: pure min-

eral samples measured using our dual-band co-registered SSI Raman spectrometer,
multi-mineral rock samples measured using the same SSI spectrometer, and pure
mineral samples whose spectra were collected from several labs across the world
and aggregated on the publicly available online database RRUFF (Ambruster and
Danisi 2015). Table 1 lists the number of spectra and samples from each data set,
along with identified minerals in the samples of which the spectra were measured.
Figure 1 shows all our pure mineral spectra plotted together and obtained by both
excitation lasers with the SSI dual-band, co-registered Raman spectrometer.
Online Materials1 Appendix A contains Tables A1, A2, and A3, which list a mix-
ture of the following information for each sample in our data sets: their ground truth
mineral compositions and uncertainties resulting from different geologists, the
locations where the sample was collected, the person who collected the sample,
and the minerals identified by the neural network along with the corresponding
confidence score output from the neural network.

Many of our mineral samples came from rock kits from DJ Minerals
(see Online Materials1 Appendix A for more details). These samples were from
Madagascar, Canada (Ontario), the U.S.A. (Montana, Wyoming, Arizona, South
Dakota, Fremont County, Colorado, and EddyCounty), andMexico. Formulti-min-
eral (rock) samples, we collected rocks from the U.S.A. (Arizona, California, Utah,
Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, South Dakota,
Washington, andWyoming) andChile.We used 191 of our rock samples in the algo-
rithm development effort, mostly from rock types that we would expect to see on the
surface of Mars or the Moon. We broke off one side of each sample with a rock
hammer to reveal a fresh surface and to simulate the collection of field samples
on a planetary or lunar surface. We measured several Raman spectra on the fresh
side of samples containing either a single mineral or multiple minerals. We obtained
966 spectra in total since there were several samples with ground truth positives for
more than one mineral. We acquired several spectra from distinct points along trans-
ects on the surface of each mineral or rock sample to ensure a representative sample
of themineralogy.We obtained spectramanually under controlled conditions, where
each sample was shielded from ambient light by placing it in a darkened enclosure
while acquiring spectral pairs. During the acquisition process, we initially put
the probe directly above the sample at a distance of approximately 1 mm from
the surface and slowly raised the stage until the signal strength was at its strongest
(∼1–2 cm), roughly coinciding with the focal length of the laser beam.

We supplemented our SSI data set with the public database RRUFF (Ambrus-
ter and Danisi 2015). The RRUFF data set is a collection of spectra from multiple
labs using different Raman spectrometers with either 532, 780, or 785 nm wave-
lengths. We used only the spectra in the RRUFF set labeled as homogenous
(i.e., pure mineral). Recall that an SSI spectral pair is measured from the same spot
on a sample, but the spectra from the RRUFF set are unlikely to be measured from
the same spot. We make a necessary assumption that two spectra measured from
different wavelengths of the same sample in the RRUFF data set are approximately
equivalent to an SSI spectral pair. This assumption is critical when combining and
comparing the two data sets.We also assume that spectra obtained with the 780 and
785 nm excitation wavelengths in the RRUFF set are approximately equivalent.
We note that the majority of the spectra from the RRUFF database have confirmed
mineral compositions from X-ray diffraction and chemical analysis. These
assumptions are not ideal (Dyar et al. 2016); however, not only do our results show

TABLE 1. Raman spectral library

Mineral

SSI multi-mineral SSI pure-mineral
RRUFF pure-

mineral

Samples Spectra Samples Spectra Samples Spectra
Gypsum 4 70 1 3 2 2
Mica 138 684 3 11 10 10
Olivine 5 45 2 5 17 17
Plagioclase 185 927 5 47 16 16
K-feldspar 153 767 3 14 10 10
Pyroxene 72 270 4 33 20 20
Quartz 184 918 4 18 10 10
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that the error resulting from these assumptions is acceptable, but our dual-band data
set is the first of its kind, so no other such data sets exist yet in literature. Thus, the
advantages of having an arbitrary data set to evaluate models outweigh the disad-
vantages of these assumptions.

We trained the neural networks on spectra collected from our in-house pure
minerals only, in which their mineral compositions were confirmed by compar-
ing their labels provided by the vendor to the spectral bands we measured with
our Raman spectrometer and mineral bands from the literature. After training, we
evaluated the neural networks on two data sets: (1) the RRUFF spectra and (2) the
spectra collected from our in-house multi-mineral rock samples. Our rock sam-
ples had their mineral compositions determined by two to three analysts trained
in petrology and mineralogy, as corroborated through a combination of techni-
ques: visual inspection, hand sample analysis, thin section analysis, labels pro-
vided by the mineral suppliers, the geological context of the areas in which the
samples were collected, and comparing Raman spectral bands of our samples to
those both in the RRUFF data set and in the literature. Since the ground truth
compositions of the rocks were independently derived from the results of three
hand sample analysts, the overlapping range of percentages may be less than
100%, as shown in Online Materials1 Table A3. Note that the classifier only
looks for the presence or absence of a mineral, regardless of the percentage of
that mineral present in the rock. Online Materials1 Table A3 also includes which
minerals were detected from the final classifier, along with the confidence score
output from the ANN.

Data processing
To reduce the spectral ranges to those containing diagnostic spectral peaks of

each mineral being investigated, we first truncated wavenumber ranges commonly
within minerals that have low signal-to-noise ratios. We determined that the range
200 to 1200 cm−1 is sufficient for minerals in our study, based on both previous
literature results (Wang et al. 1995, 2006; Freeman et al. 2008) and personal obser-
vations. For example,Wang et al. (1995) reported that the principal Raman peaks are
for olivine at ∼956 and ∼826 cm−1; for plagioclase at 503 and 483 cm−1; for quartz
at 465, 207, and 128 cm−1; for potassium feldspar at 513, 475, and 454 cm−1; ortho-
pyroxene at 1006, 678, and 660 cm−1; and for clinopyroxene at 1005 and 665 cm−1.
We also include thewavenumber range 3300 to 3700 cm−1 because this range shows
hydration bands crucial to distinguishing some minerals [like gypsum 3500 cm−1

(Liu et al. 2009)] and organics. This yields two main modalities: A, the 532 nm
excitation laser using the two wavenumber ranges 200–1200 cm−1 (A1) and
3300–3700 cm−1 (A2), and B, the 785 nm excitation laser using the wavenumber
range 200–1200 cm−1.

Spectra are collected into matrix X, where each row is a spectrum, and each
column is the intensity corresponding to a wavenumber. We normalized the inten-
sity values (X) of each spectrum by their respective minimum min (Xj,*) and max-
imum intensity max (Xi,*), using Equation 1.

Xi,* =
h
Xi,* − min�Xi,*�

i
=
h
max�Xi,*� − min�Xi,*�

i
(1)

FIGURE 1. Spectra measured
using our SSI dual-band Raman
spectrometer and pure-mineral sam-
ples. The hydration range is also from
the 532 nm excitation laser.
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Normalization is a critical step in preprocessing because the scale of intensity
values between different spectra can vary widely with integration time, orientation,
expected composition, working distance, environment, and spectrometer. Dyar
et al. (2016) showed that normalization may not fully account for such phenomena;
however, we find it empirically adequate for use within our machine learning mod-
els, especially after wavenumber truncation (Fig. 1). Furthermore, we empirically
find that by introducing Gaussian noise into the training process, as shown by Ben-
gio et al. (2014), we can capture expected errors and inherent noise in data and thus
do not need to employ more evasive processing techniques. There is a tradeoff
when using smoothing and baseline removal techniques. The main benefit is more
prominent diagnostic peaks and less background fluorescence, whereas the disad-
vantages are the inherent destruction of original information and the creation of
artifacts. Both Ishikawa and Gulick (2013) and this study noted improvement
in classification accuracy using normalized but otherwise raw spectra, as opposed
to processed spectra. The complex relationship between machine learning classi-
fication and various processing techniques requires more study.

The twoprocessing techniques that usewavenumber truncation and intensity nor-
malization are used with all our models because the models require a certain level of
dimensionality reduction and scale adjustment. However, two processing techniques
are not required, so we turn them on and off to compare performance between the
machine learningmodels: averagingmultiple spectra from the same sample and PCA.

For multi-mineral rock samples, we compare taking the average of all spectra
for an entire sample. Theoretically, this may mitigate variance and dependence on
the location of samples used to collect a spectrum. However, this action may also
mask diagnostic peaks needed to classify certain biosignatures and minerals. We
also compare using PCA to compact the data further and highlight inherent vari-
ance. Note that improved accuracy can be obtained if the training and validation/
test sets are combined into the data used to calculate the basis for PCA. However,
because the testing set is the actual data collected from a novel environment, we
only calculated the basis for PCA using the training set. During an actual surface
mission, calibration may include field samples in the data used to calculate the
basis for PCA; however, the models will then need to be retrained. After calculat-
ing the basis for PCA, we use only the principal components that contribute at least
1% to the total variance. This reduces the dimensions from 103 to 101, where the
exact dimensions vary depending on the training set and modality being used.
After PCA, the columns of intensity values (X) are standardized to zero mean
and unit variance using Equation 2.

X*,j =
h
X*,j − mean�X*,j�

i
=
h
standard deviation�X*,j�

i
(2)

Data augmentation
We also compare a method for improving training data called data augmenta-

tion. We use data augmentation to: (1) simulate mineral mixtures and (2) balance
the unequal distribution of spectra used in each mineral class, as seen in Table 1.
This process generates additional training data where there is insufficient spectral
data (Cochrane and Blacksberg 2015). Spectral data are augmented by taking ran-
dom linear combinations of 1–4 pure mineral spectra from our SSI data set. Note
that there is a nonlinear relationship between mineral mixing and Raman spectros-
copy; however, this exact relationship is unknown. Thus, we add Gaussian noise to
adjust for this unknown error. This process of augmentation with linear combina-
tions and Gaussian noise is only used during model training, not during inference
or in our test sets, and is a stopgap until either: (1) the relationship of mixing miner-
als, in the context of Raman spectroscopy, is better understood; and/or (2) a larger
database of Raman spectra measured from mineral mixtures with known abundan-
cies is available. Figure 2 shows an example of an augmented spectrum compared
to a natural spectrum with a similar composition. The standard deviation used to
randomize Gaussian noise was empirically selected to be 10% of the spectrum’s
total mean intensity. Augmentation is carried out during each iteration of model
training to create additional unique spectra to balance an equal number of natural
spectra drawn from each mineral group. We emphasize that no augmented spectra
are ever used in the test set, and all results are reported as tested against spectra
from natural samples. We later show that such data augmentations enhance the
classification accuracies of our models by allowing them to infer multi-mineral
classifications even when provided with only pure mineral spectra.

Multimodal neural network
A unique challenge is how to best represent the multiple modalities of the dual-

band Raman spectrometer, such that they map to the presence of minerals in mixtures.
Figure3 illustrates the threemachine learning approaches thatwe compare.ModalityA

is spectra obtained from the 532 nm excitation laser, and modality B is from the
785 nm excitation laser. Modality A1 is the first part of modality A (wavenumbers
200–1200 cm−1) that corresponds to a spectral region that is rich in mineral infor-
mation, and A2 is the second part that corresponds to the hydration range (wavenum-
bers 3300–3700 cm−1). One approach would be to concatenate the spectra from
modalities A and B and proceed with training the given classifier as if the dual-band
Raman spectral data are only from one modality. This is how our vanilla MLP and
LRmodels input data (MLP and LRmodels have been used in previous literature, as
listed in the “Background: Previous studies” section, on single-band spectra). How-
ever, training a neural network on spectral data that is concatenated in this way
results in hidden layer nodes with higher magnitude weights assigned to individual
modality features as opposed to interconnecting weights between different modali-
ties (Ngiam et al. 2011). This is why Ngiam proposed Multimodal Deep Learning
(MDL) as a two-step training routine that trains the first part of the neural network on
each modality independently and then the second part of the neural network on both
modalities. In Online Materials1 Appendix B, we present our approach to MDL,
which consists of the architecture of the neural network followed by our training
procedure for such a network.We refer to this neural network as amultimodal neural
network (MNN), which is a core contribution of this paper. Themain novelties of the
MNN over classical MDL approaches are: (1) applying to dual-band spectra as
opposed to audio and video modalities, and (2) the training procedure of the neural
network, which is more detailed in Online Materials1 Appendix B.

Cutoff values and AUC
During the classification process, an input spectrum will receive a given

likelihood from the ANN (between 0 and 1) for the presence of each mineral.
A threshold, otherwise called the “cutoff” value, can be set to weed out bad results.
Theoretically, samples with a lower percent composition should have lower like-
lihoods. As the cutoff value increases, the number of false positives decreases but
the number of true positives also decreases. A known cost function must be used to
optimize the cutoff value, assigning a cost to false positives and true positives.

In our classification scheme, ground truth positive samples should have higher
likelihoods than ground truth negative samples, and ideally, there should be a defini-
tive line separating the two classes. This “separability” is measured using the Area
Under the receiving operating characteristic Curve (AUC). AUC measures the sepa-
ration by iteratively sliding the cutoff values between 0 and 1 and measuring the true
positive rate against the false positive rate. AnAUC score of 1 reflects a classifier with
perfect separation between the classes, a value of 0.5 reflects a purely random binary
classifier, and a value below 0.5 reflects separation worse than a random binary clas-
sifier. The goal is to have some intermediate value between 0.5 and 1, where the
closer to 1, the better the separation, resulting in a more accurate classifier, regardless
of the cutoff value. During an actual surface mission or given a specific task, the user
will determine cutoff values depending on a well-defined cost function, in which
quantities such as accuracy will havemore significance.Without a defined cost func-
tion, our classifiers are designed to maximize AUC scores since they are highly
correlated to other error metrics without defining a specific cutoff value. For demon-
stration purposes, we selected cutoff values by optimizing a metric called “balanced

FIGURE 2. A natural rock spectrum compared to an augmented one
with similar composition. Augmented spectra are used to supplement the
training set and are never used in the testing set.
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accuracy,”which is the average recall of each class, to provide an example of how to
make classifications in the field.

Experimental setup and model selection
We designed a series of experiments to compare several models. We varied: (1)

the preprocessing techniques comparing raw spectra vs. averaging and/or PCA; (2)
the input modalities comparing Raman excitation wavelengths, 532 or 785 nm, as
independent single-band modalities vs. combined dual-band; (3) the complexity of
the neural network algorithm comparing LR vs. MLP vs. MNN; and (4) classifying
the sample as either a single- or multi-mineral sample considering it as having either
a homogeneous or heterogeneous mineral composition, respectively. All model con-
figurations are listed in Table 2. Using different random seeds, we independently
trained and evaluated 100 neural networks corresponding to each model. This
was done to capture inherent variance in the algorithms, where the number 100
was determined empirically during preliminary testing to capture variance properly.

For each model, we used our SSI Raman spectra measured from 22 pure min-
eral samples as the training set. The training set contains data used to optimize neu-
ral network parameters using a local search algorithm, as detailed in Online
Materials1 Appendix B. Note that we also toggled using data augmentation on
these 22 samples during the training process to measure its effect on AUC (sepa-
rability). After training, we evaluated each model on a holdout testing set, which
was not shown to the model during training. We used the RRUFF Raman spectra
measured from 85 pure mineral samples as the testing set for single-mineral
classification. For multi-mineral classification, we used our SSI Raman spectra
measured from 191 multi-mineral rocks as the testing set.

We conducted a series of one-sided hypothesis tests to compare eachmodel.We
compared two distribution statistics: the mean AUC score and the standard devia-
tion, σ, in AUC scores across all 100 random runs for eachmodel. A p-value reflects
the statistical relevance between the difference of two means, where a low p-value
shows a low likelihood that one mean just happens to be higher than the other. A p-
value near 0 warrants that a hypothesis is true, and a p-value near 1 does not warrant
that a hypothesis is true.We used p-values to compare the AUC scores between two
models, to test the hypothesis that one model is more robust than the other.

After comparing models, we selected a final model with a well-shaped AUC
distribution across all 100 random runs that had a high mean and low variance and
significant p-values warranting statistical relevance that themodel wasmore robust

than the others.We analyzed learning curves to select a final trained neural network
from the 100 random runs from the selected model. A learning curve visualizes the
error vs. iteration of the local search algorithm that is used to optimize the neural
network parameters. An ideal learning curve shows smooth convergence to an
optimum in the loss function. Note that each neural network converges to a local
optimum, which is likely not the global optimum. This phenomenon is the main
source of variance between multiple neural networks trained with different random
seeds. After selecting a final model and trained neural network, we set the cutoff
values used to make final classifications.

The single-mineral classifier can be used to identify a pure mineral sample.
Thus, we only needed to make one classification, and we classified the sample
as the mineral group with the highest output value from the neural network.
The multi-mineral classifier assumes the sample may have a mixed composition.
Thus, we made several classifications based on which ones received a neural net-
work output higher than the respective cutoff value for that mineral, resulting in
zero to many positive classifications. Since we do not have a defined cost function
that is mission specific, see the “Methods: Cutoff values and AUC” section, we
selected cutoff values that maximized the balanced accuracy.

Furthermore, we used leave-one-out cross-validation to measure the robustness
of the 22 pure mineral samples in our training data set. This process consists of iter-
atively removing one spectrum from the training set, training a model on the other
spectra, testing the one spectrum removed, then placing that spectrum back into the
training set and repeating the process until each spectrum is removed exactly once.

RESULTS

Figures 4–6. show distributions of AUC scores for each
trained model across all 100 random runs. A wider distribution
corresponds to a larger bin count, showing higher clustering. In
contrast, a narrower distribution shows that the AUC scores
were more dispersed. A taller distribution shows a higher range
of AUC scores. The black horizontal line in each distribution
indicates the average AUC score over all 100 runs.

Table 3 shows the statistics and resulting p-values from the
one-sided hypothesis tests. The first column in Table 3 shows

Logistic
Regression
(LR)

Multi-
Layer
Perceptron
(MLP)

Multimodal
Neural
Network
(MNN)

pyroxene
olivine
k-feldspar
quartz
mica
gypsum
plagioclase

pyroxene
olivine
k-feldspar
quartz
mica
gypsum
plagioclase

pyroxene
olivine
k-feldspar
quartz
mica
gypsum
plagioclase

Legend

       Modality A1:
       532 nm, 200-1200 cm-1

       Modality A2:
       532 nm, 3300-3700 cm-1

       Modality B:
       785 nm, 200-1200 cm-1

  

  

    

FIGURE 3. Illustration of the neural
architectures for the three machine
learning approaches. Each approach
increases in complexity, going from
LR to MLP to MNN. The first input
layer directly inputs intensity values
at each wavenumber into each node
(circles). The lines in between circles
show which nodes are connected. Note
that the MNN has “stems,” so some
nodes are not connected to all other
nodes in the previous layer (such as
in an MLP).
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the methods being compared. Mode A refers to the 532 nm
Raman excitation laser and mode B to the 785 nm; augmented
refers to adding augmented spectra to the training set (not the
testing set); logistic regression (LR) is the lowest complexity
machine learning algorithm (done before in literature),
multi-layer perceptron (MLP) is the next highest complexity
(done before in literature). Multimodal neural networks
(MNNs) have the highest complexity (introduced in this paper
for mineral classification). The second column indicates either
the single- or multi-mineral classifier. The third column shows
the p-value from a T-test given the alternative hypothesis, Ha,
where the null hypothesis is the inverse of Ha. A p-value near 0
indicates strong statistical relevance that method 1 is better
than method 2, whereas a p-value near 1 indicates a strong sta-
tistical relevance that method 1 is not better than method 2. A
p-value is reported for both single- and multi-mineral classifi-
cation. The last four columns show the means and standard
deviations of the AUC distributions. Note that when comparing

MNN to eitherMLP or LR, only the set of results that used both
modalities A and B were considered–—since MNN operates
under the assumption that the model inputs multiple modali-
ties. Also, we only compare averaging spectra for multi-min-
eral classification because the rocks have a much higher
variance than pure mineral samples, and thus, averaging is
not needed for pure mineral samples.

To select the most robust model and trained neural network,
we compare the p-values in Table 3, the AUC distributions
shown in Figures 4–6, and the learning curves for each configu-
ration and set of runs. Figure 7 shows the learning curves for all
100 runs from the two selected configurations. Not all the learn-
ing curves are shown for each model, for brevity, since there are
8400 of them in total. The final selected model, which had the
most robust AUC scores for the single-mineral classifier, uses
an MNN, dual-band excitation lasers, and augmented spectra
(model configuration III). The final selected model, which
had the most robust AUC scores for the multi-mineral classifier,

FIGURE 4. Results of each configuration using a Logistic Regression (LR) model. Not using augmented spectra in the training process corresponds to
the left-sided distribution in each column and using augmented to the right. The dark horizontal line across each cluster shows the result of using themean
of all 100 random runs. Thewidth of each cluster reflects the density of AUCamong the 100 random runs at that bin.Bin sizes were of 0.02AUC intervals.
Note that there is a large drop in accuracy (AUC) fromconfigurationVI to VII; this shows the difference between single- andmulti-mineral classifications.
See Table 2 for a description of each configuration that varies the modalities used as input into the model and the preprocessing done on Raman spectra.

TABLE 2. Experimental configurations
Configuration Modalities Processing Test Configuration Modalities Processing Test
I A raw RRUFF VII A raw SSI
II B raw RRUFF VIII B raw SSI
III A, B raw RRUFF IX A, B raw SSI
IV A PCA RRUFF X A PCA SSI
V B PCA RRUFF XI B PCA SSI
VI A, B PCA RRUFF XII A, B PCA SSI

XIII A mean SSI
XIV B mean SSI
XV A, B mean SSI
XVI A mean, PCA SSI
XVII B mean, PCA SSI
XVIII A, B mean, PCA SSI
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FIGURE 5. Results of each configuration using a Multi-Layer Perceptron (MLP) model. Not using augmented spectra in the training process
corresponds to the left-sided distribution in each column and using augmented to the right. The dark horizontal line across each cluster shows the result
of using themean of all 100 random runs. The width of each cluster reflects the density of AUC among the 100 random runs at that bin. Bin sizes were of
0.02AUC intervals. Note that there is a large drop in accuracy (AUC) from configuration VI to VII; this shows the difference between single- and multi-
mineral classifications. See Table 2 for a description of each configuration that varies the modalities used as input into the neural network and the
preprocessing done on Raman spectra.

FIGURE 6. Results of each configuration using our Multimodal Neural Network (MNN) model. Not using augmented spectra in the training process
corresponds to the left-sided distribution in each column and using augmented to the right. Note that the columns missing from this figure are those with
single modality input. The dark horizontal line across each cluster shows the result of using the mean of all 100 random runs. The width of each cluster
reflects the density of AUC among the 100 random runs at that bin. Bin sizes were of 0.02 AUC intervals. Note that there is a large drop in accuracy
(AUC) for configurations after VI; this shows the difference between single- and multi-mineral classifications. See Table 2 for a description of each
configuration that varies the modalities used as input into the neural network and the preprocessing done on Raman spectra.
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uses an MNN, dual-band excitation lasers, augmented spectra,
and averaged all spectra from each sample (model configuration
XV). The selected trained neural networks received test AUC
scores of 0.997 and 0.733 for the single- and multi-mineral
classifier, respectively.

The distributions shown in Figures 8 and 9 illustrate that the
density of responses between ground truth positives vs. nega-
tives change as the response value increases. Thus, Figures 8
and 9 show how different error metrics will change by sliding
the cutoff value. Different regions can be identified for certain
and uncertain classifications—where there is a high mix of
ground truth positives and negatives. For example, in Figure 8,
if the cutoff value for mica slid more to the right, then it will
decrease the number of false positives but increase the number
of false negatives. After selecting cutoff values for the selected
neural networks, by maximizing the balanced accuracy in the
absence of a defined cost function, we then made final classifi-
cations, which we can then evaluate using typical error metrics
such as accuracy, recall, and precision.

Table 4 shows a confusion matrix resulting from leave-one-
out cross-validation. These leave-one-out results reflect classifi-
cation accuracy for co-registered dual-band Raman spectros-
copy on pure mineral spectra collected from samples using

the same spectrometer. Table 5 shows a confusion matrix with
results from training on the SSI spectra and testing on the
RRUFF spectra. These results reflect pure-mineral classification
accuracy when using two different Raman excitation lasers on
samples collected from a different spectrometer other than the
training set. Figure 10 shows all the misclassified RRUFF spec-
tra for both wavelengths. Table 6 shows various error metrics
important for multi-classification problems. These results reflect
multi-classification accuracy for co-registered dual-band Raman
spectroscopy on rock spectra collected from samples using the
same spectrometer.

DISCUSSION

In Figures 4–6, several clusters appear Gaussian, while
others slightly deviate from this shape. However, most of these
clusters have a single mode showing the expected AUC score,
with vertical tails stretching to either side illustrating variance.

Hypothesis testing, as listed in Table 3, leads to several con-
clusions about which processes improve performance:

1. using augmented spectra in the training process results in a
significantly higher AUC for both single and multi-mineral
classification;

FIGURE 7. (a, top) Learn-
ing curves from 100 indepen-
dent runs for the selected
single-classifier configuration.
(b, bottom) Learning curves
from 100 independent runs
for the selected multi-classifier
configuration. Each learning
curve shows accuracy as a
function of training time. An
ideal learning curve will
smoothly converge to the
global optimum.

TABLE 3. One-sided hypothesis test results
Compared distributions Single or multi p-val from T-test Ha: AUC1 > AUC2 AUC1 AUC2 σ1 σ2
augmented (1)
not augmented (2)

Single-mineral 0.0 0.95 0.92 0.036 0.053
Multi-mineral 0.0 0.63 0.58 0.038 0.037

with PCA (1)
no PCA (2)

Single-mineral 1.0 0.93 0.94 0.051 0.045
Multi-mineral 1.0 0.60 0.61 0.045 0.042

with mean (1)
no mean (2)

Single-mineral N/A N/A N/A N/A N/A
Multi-mineral 0.0 0.62 0.59 0.046 0.036

mode A (1)
mode B (2)

Single-mineral 0.0 0.95 0.88 0.022 0.050
Multi-mineral 0.0 0.60 0.59 0.045 0.039

modes A and B (1)
mode A (2)

Single-mineral 0.0 0.96 0.95 0.023 0.022
Multi-mineral 0.0 0.62 0.60 0.040 0.045

modes A and B (1)
mode B (2)

Single-mineral 0.0 0.96 0.88 0.023 0.050
Multi-mineral 0.0 0.62 0.59 0.040 0.039

MLP (1)
LR (2)

Single-mineral 0.0 0.94 0.92 0.033 0.060
Multi-mineral 0.83 0.60 0.60 0.030 0.056

MNN (1)
LR (2)

Single-mineral 0.0 0.97 0.92 0.017 0.060
Multi-mineral 0.0 0.63 0.60 0.029 0.056

MNN (1)
MLP (2)

Single-mineral 0.0 0.97 0.94 0.017 0.035
Multi-mineral 0.0 0.63 0.60 0.029 0.050
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2. using PCA does not result in significantly higher AUC for
either single- or multi-mineral classification;

3. using mean spectra results in a significantly higher AUC
for multi-mineral classification;

4. using only the 532 nm spectra results in a significantly
higher AUC than using only the 785 nm spectra for both single-
and multi-mineral classification;

5. using both the 532 and 785 nm spectra results in a signifi-
cantly higher AUC than using only the 532 nm spectra for both
single- and multi-mineral classification;

6. using both the 532 and 785 nm spectra results in a signifi-
cantly higher AUC than using only the 785 nm spectra for both
single- and multi-mineral classification;

7. using an MLP results in a significantly higher AUC than
using LR for single-mineral classification but does not show
significant improvement for multi-mineral classification;

8. using our MNN results in a significantly higher AUC than
using LR for both single- and multi-mineral classification;

9. using our MNN results in significantly higher AUC than
using an MLP for both single- and multi-mineral classification.

All presented model configurations significantly improve
over their predecessors, except for PCA. This is likely because
the basis for PCA was calculated from the pure-mineral SSI
spectra (training set) and then used as a change of basis for

both the pure-mineral RRUFF and multi-mineral SSI spectra
(testing sets). Using PCA may be beneficial if the classifier
is allowed to calibrate the principal component basis on sam-
pled data from the novel environment and the models are
retrained in situ.

Figures 4–6. and Table 3 show low AUC averages for multi-
mineral classification using the SSI rock samples, especially
compared to single-mineral classification using the RRUFF pure
minerals. This highlights the large gap in difficulty between these
two types of classifications. The low AUC scores for multi-
mineral classification, those near 0.5, are largely affected by the
variations in model configurations that were being evaluated
against each other. These are shown to illustrate the effectiveness
and necessity of our methods. The global maximum values for an
individual model in AUC between the single- and multi-mineral
classifications are 0.997 and 0.733, respectively. These maximum
values are more reflective of a final model.

Recall that a learning curve shows the model performance vs.
training iteration. A surprising feature from the learning curves
shown in Figure 7 is that, for the multi-mineral case, AUC can
improve with increasing cross-entropy, the loss function used
to train the neural network (see Online Materials1 Appendix B).
This is counter-intuitive but is geometrically explained as the
distribution of inferences shifting down while simultaneously

FIGURE 8. Model responses for the single-mineral classifier, sorted from lowest to highest. The cutoff values, indicated by intersecting lines, were
found by optimizing balanced accuracy. Responses shownwere from testing on RRUFF pure-mineral samples. This illustrates that as the cutoff value
slides to the left or right, the number of false negatives and positives accordingly changes.
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spreading out. The downward shift in responses is likely because
the multi-mineral spectra used in the validation set do not closely
resemble the pure-mineral spectra used in the training set. From
the left panels in Figure 7, there are large fluctuations in cross-
entropy that can arise after some number of epochs—as visible
by the highly erratic regions of the learning curve. Such regions

correspond to when the weights are unfrozen in the “hidden layer
1” of the MNN model (see Online Materials1 Appendix B), and
the location of these regions varies by exact epoch number due
to convergence rates. In such regions, the effect on AUC highly
varies, showing that these are regions of high uncertainty. For this
reason, we opt not to unfreeze weights in the final models.

TABLE 5. Single-mineral classifier test results
Mineral Pyroxene Olivine K-feldspar Quartz Mica Gypsum Plagioclase %
Pyroxene 15 0 0 0 5 0 0 75.0
Olivine 0 17 0 0 0 0 0 100
K-feldspar 0 0 7 0 0 0 3 70.0
Quartz 0 0 0 10 0 0 0 100
Mica 0 0 0 0 10 0 0 100
Gypsum 0 0 0 0 0 2 0 100
Plagioclase 0 0 0 0 0 0 16 100
% 100 100 100 100 66.7 100 84.2 90.6

FIGURE 9. Model responses for the multi-mineral classifier, sorted from lowest to highest. The cutoff values, indicated by intersecting lines, were
found by optimizing balanced accuracy. Responses shown were from testing on SSI multi-mineral samples. This illustrates that as the cutoff value
slides to the left or right, the number of false negatives and positives accordingly changes.

TABLE 4. Single-mineral classifier leave-one-out results
Mineral Pyroxene Olivine K-feldspar Quartz Mica Gypsum Plagioclase %
Pyroxene 33 0 0 0 0 0 0 100
Olivine 0 5 0 0 0 0 0 100
K-feldspar 3 0 11 0 0 0 0 78.6
Quartz 0 0 0 18 0 0 0 100
Mica 1 0 0 0 10 0 0 90.9
Gypsum 0 0 0 0 0 3 0 100
Plagioclase 0 0 0 0 0 0 47 100
% 89.2 100 100 100 100 100 100 96.5
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When reviewing the results for single-mineral classification,
Table 5 indicates that the only misclassified RRUFF spectra were
a group of five pyroxene spectra classified as mica and a group
of three potassium feldspar spectra classified as plagioclase.
Pyroxene is a class ofmineralswith several diverse chemical com-
positions that create strongly varied responses—see the pyroxene
spectra in Figure 1. The potassium feldspar spectra are likely mis-
classified due to the different patterns observed from the 785 nm
laser between the RRUFF and SSI spectrometers—which can be
seen when comparing the potassium feldspar spectra in Figure 10
(RRUFF) to those in Figure 1 (SSI).

The mineral gypsum is classified with nearly perfect accu-
racy for multi-mineral classification, while pyroxene struggles
to be properly classified with an AUC near 0.5. This is expected
behavior, as gypsum is typically used to calibrate Raman spec-
trometers due to their strong response, and pyroxene is problem-
atic, as seen in the single-mineral classification results. Thus, our
multimodal neural network methods are beneficial for identify-
ing all mineral groups in rocks except for pyroxene. Generally,
our models find the minerals easiest to predict (in decreasing
order of AUC score) are gypsum, plagioclase, olivine, quartz,
mica, potassium feldspar, and last pyroxene.

Applications to the Moon and Mars

Our primary application of such methods is to increase the
scientific return of instruments on planetary surface missions,
especially to the Moon and Mars. Raman instruments will likely
be deployed to the Moon on Artemis III (expected 2026 launch)

and Artemis IV (expected 2028 launch) to be used by rovers
and by suited astronauts to explore the lunar surface. Instead
of having the astronauts try to figure out the minerals contained
in a spectrum, the algorithms can return an identification of the
minerals contained in the sample and the spectrum returned to
users more experienced in interpreting spectra. Astronauts will
likely encounter silicate minerals, such as plagioclase, pyroxene,
and olivine, which make up >90% by volume of most lunar
rocks (Wang et al. 1995; Papike et al. 1991). Other minerals also
occur in lunar soils and rocks but are rare. These include quartz,
cristobalite, tridymite, potassium feldspar, and zircon. However,
oxide minerals, such as ilmenite, spinel, and armalcolite, are
concentrated in some mare basalts and could be used as ores
for resource extraction at lunar bases (Papike et al. 1991). In this
paper, plagioclase, pyroxene, olivine, quartz, and potassium
feldspar, all found on the Moon, were tested and identified by
our automated spectral algorithm. Similar results would be
expected for the surface exploration of Mars as well.

Our models require no more than 100 megabytes, and our data
inputs (a dual-band Raman spectrum) are no larger than 16 kilo-
bytes. Estimating the computational time it would take to make
an inference is non-trivial, as there is no direct conversion between
floating point operations and processor speeds. The BAERAD750
processor installed on the Mars 2020 rover can perform over 200
million instructions per second. Appropriately, our MNN models
take roughly 103–104 floating point operations to make one clas-
sification. Thus, our machine learning model is lightweight and
practical compared to existing planetary surface missions.

FIGURE 10. The 8misclas-
sified RRUFF spectra mea-
sured from pure-mineral
samples. This group of 5 spec-
tra measured from pyroxene
minerals were misclassified
as mica. This group of 3 spec-
tra measured from potassium
feldspar (K-feldspar) minerals
were misclassified as plagio-
clase. There are anomalies vis-
ible in these spectra, such as
unexpected background fluo-
rescence patterns and other-
wise lower signal-to-noise
ratios than those observed in
Figure 1.

TABLE 6. Multi-mineral classifier test results
Pyroxene Olivine K-feldspar Quartz Mica Gypsum Plagioclase All

AUC 0.53 0.77 0.63 0.66 0.66 0.99 0.79 0.72
True positive 40 4 132 94 99 4 160 533
False negative 32 1 21 90 39 0 25 208
False positive 49 47 21 1 24 7 1 150
True negative 70 139 17 6 29 180 5 446
Recall 0.56 0.80 0.86 0.51 0.73 1.0 0.87 0.72
Specificity 0.59 0.75 0.45 0.86 0.55 0.96 0.83 0.75
Precision 0.45 0.08 0.86 0.99 0.82 0.36 0.99 0.78
Sensitivity 0.69 0.99 0.45 0.06 0.42 1.0 0.17 0.68
Accuracy 0.58 0.75 0.78 0.52 0.67 0.96 0.86 0.73
F1-score 0.50 0.14 0.86 0.67 0.76 0.53 0.93 0.75
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IMPLICATIONS

In any geologic field exploration, the explorer, whether robot
or human, must decide which rocks or soils are worthy of further
attention and whether to include them in their sample collection.
TheApollo astronautsmade decisions based on gross shape or size
of the rock or the color of the soil (for example, the famous orange
soil of Apollo 17). However, inmost lunar exploration cases, there
is little visual feedback to guide the explorer from inside a space-
suit or from a rover camera. In addition, performing simple tests
used by terrestrial field geologists, such as tasting a rock for halite,
using a drop of dilute HCl to confirm a CaCO3-rich rock, scratch-
ing the rock surface to test for hardness, or even scratching a fine-
grained rock gently across their teeth to determine very fine sand
and silt from clay grain sizes, would not be possible from the sur-
face of theMoon orMars. Therefore, the ability to quickly classify
minerals, rocks, and sediment samples on a planetary surface
could greatly enhance the science return from Mars rovers or
suited astronauts on the Moon. The spectra returned by Raman
spectrometers can be difficult to interpret in the field. Automated
spectral algorithms provide quick opinions/results of the minerals
contained in spectra, allowing the explorer to make informed deci-
sions during their field reconnaissance. When such automated
classifiers are integrated with Raman spectrometers, onboard clas-
sifications can improve decision making (e.g., where and how to
probe next) without the delay in requiring multiple command
cycles to interpret the data, thus improving science yield.

Integrating multiple sensors and fusing the resulting data can
improve the robustness of autonomous mineral classification, as
shown in this paper using two co-registered laser excitations in
a single Raman spectrometer. However, extending these presented
methods to integrate other data sources can further improve the
science return. Each data source adds a unique perspective, aiding
in the discovery of new correlations used to map provided input to
desired output. The key advantage of using a neural network to
learn such a mapping, as we do, is that high-performance comput-
ing is used during training, inwhich the algorithmoptimizesmodel
parameters with the high dimensional feature-space while keeping
the number of computations low during inference, as to make the
algorithms deployable to the resource-constrained devices typical
in remote surveyors. We posit that integrating larger databases
with multiple sensors will yield robust IDU systems capable of
autonomously exploring remote planetary surfaces.
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