Parascorodite, FeAsO₄·2H₂O—a new mineral from Kaňk near Kutná Hora, Czech Republic

PETR ONDRUŠ,^{1,*} ROMAN SKÁLA,¹ CECILIA VITI,² FRANTIŠEK VESELOVSKÝ,¹ FRANTIŠEK NOVÁK,³ AND JIŘÍ JANSA³

¹Czech Geological Survey, Klárov 3/131, P.O. Box 85, CZ-118 21 Prague 1, Czech Republic
²Dipartimento di Scienze della Terra, Via Laterina, 8, I-53100 Siena, Italy
³Institute of Raw Materials, CZ-284 03 Kutná Hora 425, Czech Republic

ABSTRACT

Parascorodite, a new mineral from Kaňk near Kutná Hora, Central Bohemia, Czech Republic, forms earthy white to white-yellow aggregates associated with scorodite, pitticite, bukovskýite, kaňkite, zýkaite, gypsum, and jarosite, wet chemical analysis gave (in wt%): As₂O₅ 44.45, P₂O₅ 0.84, SO₃ 1.53, Fe₂O₃ 34.55, Al₂O₃ 0.17, H₂O 17.81, totaling 99.95. The simplified chemical formula is FeAsO₄·2H₂O. Selected area electron diffraction suggests hexagonal or trigonal symmetry. The extinction symbol is P-c-. Powder X-ray diffraction yielded unit-cell parameters a = 8.9327(5) Å, c =9.9391(8) Å, V = 686.83 (8) Å³, Z = 6. Densities (measured and calculated, respectively) are $D_m =$ 3.213(3) g/cm³ and $D_x = 3.212$ g/cm³. SEM and TEM images showed that basal sections of parascorodite are hexagonal in shape; thicker prismatic crystals were also observed. Crystal size varies between 0.1 to 0.5 μ m. The strongest lines in the X-ray powder diffraction pattern are [d][hkl]: 4.184(44)(012), 4.076(100)(111), 3.053(67)(202), 2.806(68)(211), 2.661(59)(113), 2.520(54)(212),2.2891(44)(032). Refractive indexes could not have been measured due to extremely small crystallite size, \overline{n} (calc) = 1.797. The TG curve shows two weight losses: at 20–150 °C (2.1 wt%, absorbed water) and at 150-620 °C (15.5 wt%, molecular water), respectively. They correspond to the endothermic peaks on the DTA curve at 120 and 260 °C. Strong exothermic reaction observed at 585 °C reflects formation of the phase FeAsO₄. Infrared absorption spectra of parascorodite are close to those of scorodite.