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ABSTRACT

Spontaneous strains for the a ↔ b transition in quartz were determined from lattice
parameter data collected by X-ray powder diffraction and neutron powder diffraction over
the temperature range ;5–1340 K. These appear to be compatible with previous deter-
minations of the order parameter variation in a quartz only if there is a non-linear rela-
tionship between the individual strains and the square of the order parameter. An expanded
form of the 2-4-6 Landau potential usually used to describe the phase transition was
developed to account for these strains and to permit calculation of the elastic constant
variations. Calibration of the renormalized coefficients of the basic 2-4-6 potential, using
published heat capacity data, provides a quantitative description of the excess free energy,
enthalpy, entropy, and heat capacity. Values of the unrenormalized coefficients in the Lan-
dau expansion that include all the strain-order parameter coupling coefficients were used
to calculate variations of the elastic constants. Values of the bare elastic constants were
extracted from published elasticity data for b quartz. Calculated variations of C11 and C12

match their observed variations closely, implying that the extended Landau expansion
provides a good representation of macroscopic changes within the (001) plane of quartz.
Agreement was not as close for C33, suggesting that other factors may influence the strain
parallel to [001]. The geometrical mechanism for the transition involves both rotations and
shearing of SiO4 tetrahedra, with each coupled differently to the driving order parameter.
Only the shearing part of the macroscopic distortions appears to show the same temperature
dependence as other properties that scale with Q 2. Coupling between the strain and the
order parameter provides the predominant stabilization energy for a quartz and is also
responsible for the first-order character of the transition.

INTRODUCTION

Because of its geological and technological impor-
tance, quartz has attracted the attention of scientists in
diverse fields. Of particular interest have been the marked
changes in physical and thermodynamic properties that
accompany the a ↔ b transition. Relationships between
these properties are generally described using two differ-
ent approaches. Several authors have used the Pippard
equations for a l transition (Pippard 1956; Garland 1964)
to relate heat capacity, thermal expansion, and elastic
compliances (e.g., Hughes and Lawson 1962; Garland
1964; Klement and Cohen 1968; Coe and Paterson 1969;
Bachheimer and Dolino 1980; Dolino et al. 1983; Hosieni
et al. 1985; Dorogokupets 1995). Others have used stan-
dard Landau free energy expansions (Höchli and Scott
1971; Grimm and Dorner 1975; Bachheimer and Dolino
1975; Banda et al. 1975; Dolino and Bachheimer 1982;
Dolino et al. 1983; Salje et al. 1992). Landau theory may
be expected to fail in the close vicinity of a critical point
but should provide a valid description of the behavior
over many hundreds of degrees away from the transition

point. On the other hand, the Pippard equations were de-
signed to characterize thermodynamic properties as a
transition point is approached and do not necessarily rep-
resent the behavior over the wider temperature interval
(see discussion in Klement and Cohen 1968). Given the
amount of work that has been done on quartz, it is some-
what surprising that a comprehensive description of the
relationships among elastic constants, spontaneous strain,
and excess energy has not been published. Data for the
elastic constants have been available since the 1940s
(Atanasoff and Hart 1941; Atanasoff and Kammer 1948;
Kammer et al. 1948), and numerous studies of thermal
expansion appear in the literature (summarized in Ack-
ermann and Sorrell 1974; Bachheimer and Dolino 1975;
Ghiorso et al. 1979; Dolino and Bachheimer 1982). The
formal dependence of these properties on the driving or-
der parameter is also known (e.g., Höchli and Scott 1971;
Bachheimer and Dolino 1975), but values for the relevant
coupling coefficients have not been determined. The pri-
mary objective of the present paper is to fill this apparent
gap. High-temperature lattice parameters were redeter-
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mined for this purpose, and values for all the required
coefficients in a full Landau expansion have been derived.
The elastic constant variations were then calculated, lead-
ing to some reanalysis of both the microscopic and mac-
roscopic mechanisms of the phase transition.

The most characteristic features of the a ↔ b quartz
transition have been discussed by Dolino (1988, 1990)
and Dolino et al. (1992), and more recent reviews of the
literature are included in Heaney (1994), Dolino and Val-
lade (1994), and Dorogokupets (1995). A summary of
earlier thermodynamic data was given by Ghiorso et al.
(1979). The incommensurate phase is stable only over a
temperature interval of less than 2 K above the transition
point and probably does not have a direct bearing on the
thermodynamic behavior over the much wider tempera-
ture interval considered here.

This paper is divided into eight main sections. The bare
essentials of Landau theory required to describe the tran-
sition are set out first. In the second section, spontaneous
strain data are extracted from high-temperature lattice pa-
rameter measurements. New sets of X-ray and neutron
diffraction data were collected because the central issue
is the relationship between strain and the driving order
parameter, Q. Next, published data for the heat capacity,
Cp, are used to determine absolute values for the coeffi-
cients of terms in Q alone. In the fourth section, elastic
constant data for temperatures above the transition point
are fit with a standard expression to obtain values for the
bare elastic constants of b quartz (i.e., excluding the in-
fluence of the transition). To test the model, values of the
elastic constants calculated by using the Landau expan-
sion for temperatures below the transition point are com-
pared with measured values from the literature. The final
three sections deal with insights that the numerical results
provide into the relative importance of the soft mode and
elastic energies in stabilizing a quartz, the relationship
between microscopic distortions of the structure and mac-
roscopic strain, and consideration of whether the transi-
tion can be treated as an elastic instability.

LANDAU THEORY

It is well established that the macroscopic evolution of
quartz at and below the a ↔ b transition point can be
described by the standard Landau expansion for a first-
order transition (Grimm and Dorner 1975; Bachheimer
and Dolino 1975; Banda et al. 1975; Dolino and Bach-
heimer 1982). Odd order terms in Q are not permitted by
symmetry and the expansion is written as:

1 1 1
2 4 6G 5 a(T 2 T )Q 1 b*Q 1 c*Q (1)c2 4 6

where b* and c* are the renormalized fourth and sixth
order coefficients (including the effects of strain-order pa-
rameter coupling). If b* is negative, the equilibrium evo-
lution of Q is given by:

1/22 3 T 2 Tc2 2Q 5 Q 1 1 1 2 . (2)05 1 2 6[ ]3 4 T 2 Ttr c

At the equilibrium transition temperature, , there is aTtr

jump in the value of Q from zero to , where:Q0

4a
2Q 5 2 (T 2 T ). (3)0 tr cb*

The difference between and may also be expressedT Ttr c

as:

23(b*)
(T 2 T ) 5 (4)tr c 16ac*

and is a measure of how close the first-order transition is
to being tricritical in character (b* , 0 and Ttr . Tc for
first order, b* 5 0 and Ttr 5 Tc for tricritical character).

The excess enthalpy and entropy associated with the
transition are given in the usual way by:

1 1 1
2 4 6H 5 2 aT Q 1 b*Q 1 c*Q (5)c2 4 6

1
2S 5 2 aQ . (6)

2

There is a latent heat of transformation (for b → a) of:

1
2L 5 2 aT Q . (7)tr 02

To evaluate the role of strain and the evolution of the
second order elastic constants, it is necessary to include
strain terms explicitly. For the symmetry change P6422
↔ P3221 (or P6222 ↔ P3121), the complete expansion
is:

1 1 1 1
2 4 6 8G 5 a(T 2 T )Q 1 bQ 1 cQ 1 dQc2 4 6 8

2 2 2 2 21 l (e 1 e )Q 1 l e Q 1 l (e 1 e )Q1 1 2 3 3 4 4 5

2 2 21 l (e e 2 e e 1 e e )Q 1 l [e 1 (e 2 e ) ]Q5 1 4 2 4 5 6 6 6 1 2

4 4 31 l (e 1 e )Q 1 l e Q 1 l (e e 2 e e 1 e e )Q7 1 2 8 3 9 1 4 2 4 5 6

1 1
0 0 2 0 0 21 (C 1 C )(e 1 e ) 1 (C 2 C )(e 2 e )11 12 1 2 11 12 1 24 4

1 1 1
0 0 2 0 2 2 0 21 C (e 1 e )e 1 C e 1 C (e 1 e ) 1 C e .13 1 2 3 33 3 44 4 5 66 62 2 2

(8)

This differs from the expansions discussed previously
(e.g., Höchli and Scott 1971 or Bachheimer and Dolino
1975) by the extension to eighth order in Q, the addition
of the lowest order coupling terms permitted by sym-
metry for all six strains (e1 2 e6 in Voigt notation), and
the inclusion of higher order coupling terms in e1, e2, and
e3. The higher order terms are included in anticipation of
the observation that the spontaneous strains e1 (5 e2) and
e3 do not vary linearly with Q 2. A coupling term of the
form le1

2Q 2 has the same symmetry properties as le1Q 4

and is therefore equally valid for describing the higher
order coupling but, along with le3

2Q 2 for le3Q 4, leads to
severe algebraic complexity. Rather than adding a higher
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order coupling term, the non-linearity between strains and
Q 2 could have been accounted for by allowing the coef-
ficients l1 and l3 to vary with temperature. However cou-
plings of the form leQ 2 lead to a renormalization of the
fourth order coefficient of a Landau expansion, and this
is not usually given an explicit temperature dependence.
The higher order strain terms with constant coefficients
l7 and l8 are therefore preferred at this stage. A higher
order coupling term, l9e1e4Q 3, has been added for com-
pleteness to produce a description of the anomalous be-
havior of C14 described by Höchli and Scott (1971). The
angular strains e4, e5, and e6 are strictly zero, by sym-
metry, but their coupling coefficients l4, l5, and l6 need
not be zero, as discussed for variations of the elastic con-
stants C14 (5 2C24 5 C56), C44 (5 C55), and C66 in a quartz.
The superscript 0 on all the elastic constants in the full
free energy expansion signifies that they are ‘‘bare’’ elas-
tic constants. Their numerical values are such as to ex-
clude the influence of the phase transition.

Under equilibrium conditions, a crystal must be at a
free energy minimum with respect to strain, giving the
formal conditions ]G/]e1 5 ]G/]e3 5 0. Standard alge-
braic manipulations then yield:

0 0 02l C 2 l (C 1 C )1 13 3 11 12 2e 5 Q3 0 0 0 0 2[ ](C 1 C )C 2 2C11 12 33 13

0 0 02l C 2 l (C 1 C )7 13 8 11 12 41 Q (9)
0 0 0 0 2[ ](C 1 C )C 2 2C11 12 33 13

and:
0 02l C 2 2l C3 13 1 33 2(e 1 e ) 5 Q1 2 0 0 0 0 2[ ](C 1 C )C 2 2C11 12 33 13

0 02l C 2 2l C8 13 7 33 41 Q . (10)
0 0 0 0 2[ ](C 1 C )C 2 2C11 12 33 13

Substituting Equations 9 and 10 into Equation 8 (with e4

5 e5 5 e6 5 0) leads to relations between the fourth and
sixth order coefficients, b and c, and their renormalized
values, b* and c*, in Equation 1:

2 0 0 2 0 0l (C 1 C ) 1 2l C 2 4l l C3 11 12 1 33 1 3 13b* 5 b 2 2 (11)
0 0 0 0 2[ ](C 1 C )C 2 2C11 12 33 13

0 0 0 0c* 5 c 2 6{[l l (C 1 C ) 1 2l l C 2 2l l C3 8 11 12 1 7 33 1 8 13

0 0 0 0 0 22 2l l C ]/[(C 1 C )C 2 2C ]}.3 7 13 11 12 33 13

(12)

An eighth order term was not included in Equation 1,
which is equivalent to assigning the value zero to the
eighth order coefficient, d*. The unrenormalized coeffi-
cient, d, in Equation 8 is not zero, and the two are related
by:

2 0 0 2 0 02l C 2 4l l C 1 l (C 1 C )7 33 7 8 13 8 11 12d* 5 d 2 4 . (13)
0 0 0 0 2[ ](C 1 C )C 2 2C11 12 33 13

Expressions for the isothermal (as opposed to adiabat-
ic) elastic constants can be derived easily from Equation

8. The most general solution for systems in which the
driving order parameter is not a symmetry breaking strain
may be expressed as (after Slonczewski and Thomas
1970; Rehwald 1973; Bulou et al. 1992):

212 2 2 2] G ] G ] G ] G
C 5 2 · · . (14)Oik 1 2]e ]e ]e ]Q ]Q ]Q ]e ]Qm,ni k i m m n k n

The order parameter is only one dimensional in the pres-
ent case, so m 5 n 5 1, and (]2G/]Q 2)21 is referred to
typically as the order parameter susceptibility, x. The
general solution can therefore be simplified to:

2 2 2] G ] G ] G
C 5 2 ·x · . (15)ik ]e ]e ]e ]Q ]e ]Qi k i k

Consider C11, for example. In b quartz Q 5 0 and, in
the absence of thermal fluctuation effects, C11 5 C , C12

0
11

5 C . For a quartz the relevant symmetry-adapted forms0
12

of the elastic constants and strains are ½(C11 1 C12), ½(C11

2 C12), (e1 1 e2), and (e1 2 e2). The variations of (C11 1
C12) and (C11 2 C12) are given by:

22 21 ] G ] G
(C 1 C ) 5 2 x11 12 2 1 22 ](e 1 e ) ](e 1 e )]Q1 2 1 2

1
0 0 3 25 (C 1 C ) 2 [2l Q 1 4l Q ] x (16)11 12 1 72

and
22 21 ] G ] G

(C 2 C ) 5 2 x11 12 2 1 22 ](e 2 e ) ](e 2 e )]Q1 2 1 2

1
0 0 25 (C 2 C ) 1 2l Q . (17)11 12 62

C11 and C12 can then be given separately as:

1 1
C 5 (C 1 C ) 1 (C 2 C )11 11 12 11 122 2

0 2 3 25 C 1 2l Q 2 [2l Q 1 4l Q ] x (18)11 6 1 7

and

1 1
C 5 (C 1 C ) 2 (C 2 C )12 11 12 11 122 2

0 2 3 25 C 2 2l Q 2 [2l Q 1 4l Q ] x. (19)12 6 1 7

Expressions for all the second-order elastic constants de-
rived in this way are listed in Table 1. As expected for a
system without any bilinear coupling between strain and
the driving order parameter, deviations from the bare elas-
tic constants are predicted to occur only in a quartz.

Finally a general expression for the order parameter
susceptibility can be derived from Equation 8 as:

2] G
21x 5

2]Q

2 4 65 a(T 2 T ) 1 3bQ 1 5cQ 1 7dQc

21 2l (e 1 e ) 1 2l e 1 12l (e 1 e )Q1 1 2 3 3 7 1 2

2 2 2 2 21 12l e Q 1 2l (e 1 e ) 1 2l [e 1 (e 2 e ) ]8 3 4 4 5 6 6 1 2

1 6l (e e 2 e e 1 e e )Q. (20)9 1 4 2 4 5 6
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TABLE 1. Predicted variations (using Equations 8 and 15) for elastic constants of a material subject to a zone-center phase
transition involving the symmetry change 622 S 32

b quartz (622) a quartz (32)

C11 5 C22 5 C0
11

C33 5 C0
33

C12 5 C0
12

C13 5 C23 5 C0
13

C11 2 C12 5 C 2 C0 0
11 12

C11 1 C12 5 C 1 C0 0
11 12

C14 5 2C24 5 C56 5 0
C44 5 C55 5 C0

44

C66 5 C 5 ½(C 2 C )0 0 0
66 11 12

C11 5 C22 5 C 1 2l6Q2 2 [2l1Q 1 4l7Q3]2 x0
11

C33 5 C 2 [2l3Q 1 4l8Q3]2 x0
33

C12 5 C 2 2l6Q2 2 [2l1Q 1 4l7Q3]2 x0
12

C13 5 C23 5 C 2 [2l1Q 1 4l7Q3]·[2l3Q 1 4l8Q3] x0
13

C11 2 C12 5 (C 2 C ) 1 4l6Q20 0
11 12

C11 1 C12 5 (C 1 C ) 2 2[2l1Q 1 4l7Q3]2 x0 0
11 12

C14 5 2C24 5 C56 5 l5Q 5 l9Q3

C44 5 C55 5 C 1 2l4Q20
44

C66 5 C 1 2l6Q2 5 ½(C11 2 C12)0
66

At equilibrium, the strains e4, e5, and e6 are all zero and
e1 5 e2, giving:

21 2x 5 a(T 2 T ) 1 (2b 1 b*)Qc

1
4 61 (8c 1 7c*)Q 1 (4d 1 3d*)Q . (21)

3

Over some temperature interval close to the transition
point of a thermodynamically continuous phase transition,
the Ginzburg interval, it is known that critical fluctuations
must develop. However, for systems with significant
spontaneous strains, this temperature interval is expected
to be small (Ginzburg et al. 1987; Salje et al. 1992; Car-
penter 1992; Salje 1993; and references therein). In the
case of the a ↔ b quartz transition, which has large
strains and first-order character, a Ginzburg interval of |Ttr

2 Tc| ,, 1 K is likely. If deviations from the variations
in physical properties predicted from Equation 8 are ob-
served over a wider temperature range, it is most unlikely
that critical fluctuations could be responsible.

SPONTANEOUS STRAIN

The strains of interest for the present analysis are e1,
e3, and Vs, which are defined as:

a 2 a0e 5 e 5 (22)1 2 a0

c 2 c0e 5 (23)3 c0

V 2 V0V 5 . (24)s V0

Here a, c, and V are lattice parameters of a quartz at a
given temperature, and a0, c0, and V0 are reference param-
eters extrapolated down to the same temperature from the
stability field of b quartz.

Two sets of high-temperature data were used to deter-
mine strains for a natural quartz sample from Brazil. The
first set was obtained using the heating cell and INEL
position sensitive detector system described by Salje et
al. (1993). Approximately 35 powder diffraction lines
(monochromatic CuKa1 radiation) with 2u values be-
tween 21 and 1148 were used to refine the a and c lattice
parameters.

Absolute temperature was not particularly well-con-

strained in these experiments, but was calibrated by
choosing 847 K for the transition point evident in the
data. The relative temperature scale was determined to a
precision of about 61 K, using a thermocouple welded
to the underside of the platinum heating strip on which
the sample was placed. To constrain the extrapolation of
a0, c0, and V0 as precisely as possible, data collection was
extended up to ;1340 K, well into the stability field of
b quartz.

The second data set was obtained by time-of-flight neu-
tron powder diffraction at the ISIS facility. Data were
collected for d spacings between 0.7 and 2.5 Å. Approx-
imately 5 cm3 of the sample were held in a cylindrical
vanadium can, and temperature was monitored using a
thermocouple placed close to it. Measured temperatures
were again rescaled by up to a few degrees to be consis-
tent with a transition temperature of 847 K. For data be-
low room temperature, the sample was held in a helium-
flow cryostat. The two sets of lattice parameters listed in
Table 2 are illustrated in Figure 1. Greater scatter in the
X-ray data is a consequence of the poorer resolution of
the position sensitive detector relative to that of the neu-
tron diffractometer.

Extrapolations of a0, c0, and V0 from linear least-
squares fits to the combined X-ray and neutron data above
Ttr are described by a0 5 4.996 1 2.63 3 1026T (Å), c0

5 5.464 2 5.63 3 1026T (Å), and V0 5 118.15 2 3.64
3 1025T (Å3), for T in Kelvins. The resulting strains,
calculated using Equations 22–24, are shown in Figure 2.
Coupling of the form leQ 2 should normally lead to
strain-order parameter relationships of the form e } Q 2.
Also, for trigonal and hexagonal systems, Vs 5 2e1 1 e3

to a good approximation. The strain data might at first be
expected to vary as e1 } e3 } Vs } Q 2. If this is the case,
the equilibrium variation of Q 2 can be determined by sub-
stituting Vs for Q 2 in Equation 2:

1/22 3 T 2 TcV 5 V 1 1 1 2 . (25)s s,05 1 2 6[ ]3 4 T 2 Ttr c

The constant of proportionality between Vs and Q 2 can-
cels out because it appears on both sides of the equation,
and Vs,0 specifies the magnitude of the discontinuity in Vs

at T 5 Ttr. The value of Ttr 5 847 K was chosen because
it falls within the hysteresis limits of ;845.7 K (incom-
mensurate phase → a quartz) and ;847.2 K (a quartz →
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TABLE 2. Lattice parameters as a function of temperature for quartz

Neutron data

T (K) a (Å) c (Å) V (Å3)

X-ray data

T (K) a (Å) c (Å) V (Å3)

4
25
50
75

100

4.90158
4.90160
4.90189
4.90249
4.90326

5.39896
5.39898
5.39907
5.3993
5.39965

112.334
112.336
112.351
112.383
112.426

293
321
346
370
389

4.9135(3)
4.9150(3)
4.9172(4)
4.9186(4)
4.9216(5)

5.4042(5)
5.4058(6)
5.4069(8)
5.4090(8)
5.4083(8)

113.01(1)
113.09(2)
113.22(2)
113.35(2)
113.45(2)

125
150
175
200
225

4.90423
4.90532
4.90651
4.90779
4.90922

5.40011
5.40068
5.40132
5.40201
5.40283

112.480
112.542
112.610
112.683
112.766

408
428
447
466
486

4.9223(3)
4.9231(4)
4.9254(8)
4.9268(7)
4.9292(5)

5.4095(7)
5.4105(9)
5.4110(13)
5.4129(12)
5.4139(10)

113.51(2)
113.56(2)
113.68(3)
113.79(2)
113.92(2)

250
308
383
434
484

4.91071
4.91478
4.91995
4.92406
4.92851

5.40370
5.40620
5.40916
5.41173
5.41454

112.852
113.092
113.392
113.635
113.900

505
524
544
563
583

4.9308(5)
4.9339(6)
4.9353(5)
4.9363(5)
4.9397(6)

5.4164(9)
5.4172(10)
5.4190(10)
5.4211(10)
5.4227(11)

114.05(3)
114.20(3)
114.31(2)
114.40(2)
114.59(3)

524
564
605
645
670

4.93220
4.93602
4.94027
4.94506
4.94961

5.41688
5.41933
5.42203
5.42509
5.42835

114.120
114.348
114.602
114.890
115.170

602
622
641
660
680

4.9416(6)
4.9438(5)
4.9458(5)
4.9473(4)
4.9498(3)

5.4243(11)
5.4247(10)
5.4269(9)
5.4278(7)
5.4305(7)

114.71(3)
114.82(2)
114.96(2)
115.05(2)
115.23(2)

700
720
739
761
781

4.95297
4.95565
4.95857
4.96180
4.96534

5.43048
5.43212
5.43407
5.43608
5.43835

115.372
115.532
115.709
115.903
116.117

699
718
738
757
776

4.9523(4)
4.9574(5)
4.9603(5)
4.9626(6)
4.9664(6)

5.4311(8)
5.4316(10)
5.4345(10)
5.4375(9)
5.4423(11)

115.35(2)
115.60(2)
115.80(2)
115.97(2)
116.25(3)

816
824
832
841
848

4.97424
4.97722
4.98081
4.98624
4.99672

5.44404
5.44599
5.44828
5.45169
5.45768

116.656
116.837
117.055
117.384
118.007

796
805
815
825
834

4.9684(7)
4.9702(7)
4.9746(7)
4.9785(7)
4.9819(6)

5.4455(9)
5.4468(11)
5.4451(10)
5.4459(10)
5.4487(8)

116.42(3)
116.53(3)
116.69(3)
116.90(3)
117.10(3)

851
853
855
857
859

4.99795
4.99803
4.99809
4.99816
4.99819

5.45892
5.45894
5.45897
5.45896
5.45906

118.092
118.096
118.100
118.103
118.107

844
854
864
873
893

4.9904(14)
4.9966(5)
4.9981(5)
4.9983(5)
4.9988(4)

5.4487(21)
5.4567(9)
5.4584(8)
5.4579(7)
5.4589(7)

117.51(7)
117.89(2)
118.09(2)
118.09(2)
118.13(2)

861
866
871
876
881

4.99828
4.99839
4.99846
4.99852
4.99861

5.45896
5.45901
5.45903
5.45902
5.45894

118.109
118.115
118.119
118.121
118.124

912
931
950
999

1047

5.0002(5)
5.0001(6)
4.9994(5)
5.0003(4)
4.9987(8)

4.4595(11)
5.4606(10)
5.4590(9)
5.4587(8)
5.4566(14)

118.21(3)
118.23(2)
118.16(2)
118.20(2)
118.08(3)

1095
1145
1193
1241
1289
1338

4.9998(5)
4.9990(6)
5.0008(5)
5.0004(5)
4.9990(7)
4.9976(7)

5.4568(10)
5.4569(10)
5.4564(11)
5.4554(10)
5.4588(13)
5.4559(13)

118.14(2)
118.10(2)
118.17(3)
118.13(2)
118.07(3)
118.01(3)

Note: Figures in brackets represent the uncertainties (1s) in the last figure of the quoted lattice parameters for the X-ray data (derived from the least
squares fitting procedure). The equivalent uncertainty in the neutron data is estimated as 61 in the last figure.

b quartz) from experiments in which temperature was
well-constrained (Dolino et al. 1984). It is also within ;1
K of most of the transition temperatures listed in Ghiorso
et al. (1979).

Attempts to fit the parameters in Equation 25 using Vs

data gave strong correlations between Tc and Vs,0. An in-
dependent determination of Vs,0 was therefore adopted, on
the basis of the high-precision thermal expansion data
reported by Bachheimer (1980, 1986) and Mogeon (1988)
for temperatures within ;2 K of the transition. At the
midpoint between the hysteresis limits, their results give
the difference in linear strain between b quartz (extrap-
olated from the b stability field into the stability field of
the incommensurate structure) and a quartz as 22.1 3
1023, 21.9 3 1023, and 22.0 3 1023, respectively. From
correlations of e1 with Vs and e3, an average value of e1,0

5 22.0 3 1023 corresponds to Vs,0 5 25.1 3 1023 and
e3,0 5 21.1 3 1023. Refitting the neutron data in the tem-
perature interval 308 2 841 K with Tc as the only variable
then yielded Tc 5 843.9 K. The fit is shown in Figure 2,
as are variations of e3 and e1 using the corresponding e3,0,
e1,0 values and the same Ttr, Tc values. Agreement between
the observed and fit variations is reasonable, except for
the marked deviation of e3 below ;650 K. (Note that
strain data from below room temperature were not in-
cluded in the fitting process because of the effects of or-
der parameter saturation. These have been described by
Salje et al. 1991 and are not accounted for by the standard
Landau expansion).

Values of Ttr 2 Tc were determined in several studies
and are typically in the range 4–13 K (Axe and Shirane
1970; Höchli and Scott 1971; Grimm and Dorner 1975;
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FIGURE 1. Lattice parameters of quartz from X-ray powder
diffraction data (crosses) and neutron powder diffraction data
(open circles). The values for a0, c0, and V0 are the parameters
of b-quartz extrapolated from high temperatures into the stability
field of a quartz. Uncertainties in a0 (derived from 61s in the
fit parameters) are shown for three temperatures.

FIGURE 2. Strains calculated using Equations 22–24 (sym-
bols as in Fig. 1). The curves are solutions to Equation 25 with
Ttr 5 847 K, Tc 5 843.9 K, e1,0 5 20.0020, e3,0 5 20.0011, Vs,0

5 20.0051. The main source of uncertainty in strains from the
neutron data derives from the extrapolations of a0, c0, and V0.
Propagation of 61s for the fit parameters of these gives uncer-
tainties that are smaller than the dimensions of the symbols at
temperatures above ;300 K.

Bachheimer and Dolino 1975; Banda et al. 1975; Boysen
et al. 1980; Tezuka et al. 1991; Dolino et al. 1992; Kihara
1993). The value of 3.1 K from the strain data thus ap-
pears to be somewhat low. A small non-linearity in the
relationship between e1 and e3 (Fig. 3) suggests that a
factor in the inconsistency could be the existence of high-
er order strain-order parameter coupling effects. This pos-
sibility appears to be confirmed by comparing the ob-
served spontaneous strains with independently determined
values of the order parameter.

The most tightly constrained determination currently
available for Q in the temperature interval 298–846 K is
given by Bachheimer and Dolino (1975) from optical
data. Their best fit to Equation 2 gave Ttr 2 Tc 5 7.2 K.
This has been rounded to 7 K here. For Ttr 5 847 K, Tc

is therefore 840 K, which is within uncertainty limits of
the experimental value of 841 K determined by Tezuka
et al. (1991). According to Equations 9 and 10, higher
order strain coupling terms of the form leQ 4 in the Lan-
dau expansion should lead to relationships of the form:

ei 5 AQ 2 1 BQ 4 (26)

for i 5 1 2 3. The linear strains have therefore been
plotted against Q 2, as calculated from Equation 2 with Ttr

5 847 K, Tc 5 840 K, and Q0 5 0.377 (Fig. 4). (The
value of Q0 is obtained by using these values of Ttr and
Tc with Q 5 1 at 0 K). A standard least-squares fitting
procedure for the neutron diffraction results yielded the
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FIGURE 3. Variation of e3 with e1 for strains derived from the
neutron diffraction data. The straight line passing through the
origin is a guide to the eye, drawing attention to a non-linear
relationship between the two strains. Propagated uncertainties
(from 61s in the fit parameters for a0 and c0) are shown for
points corresponding to 565, 308, and 4 K.

FIGURE 4. Variations of e1 and e3 (from neutron diffraction
data) as a function of Q2 calculated for Ttr 5 847 K, Tc 5 840
K. The curves are fits to the data between 308 and 841 K using
an equation of the form of Equation 26. Strains calculated from
the high-temperature lattice parameter data of Kihara (1990) are
also shown for comparison (filled circles).

FIGURE 5. Strain variations (from neutron diffraction data)
in the vicinity of the transition temperature. The curves are de-
rived from Equation 26 with the coefficients from the fits shown
in Figure 4. Note that the experimental data points just below
the transition temperature fall below the Landau solution, and
there may be a small dip in the strain as Ttr is approached from
above. The solid bars represent the magnitudes of the disconti-
nuities expected on the basis of the linear expansion data of
Bachheimer (1980, 1986) and Mogeon (1988).

values A 5 20.01656, B 5 20.00501 for e1, and A 5
20.00900, B 5 20.00476 for e3. As before, data for T ,
298 K were excluded from the fit. From Figure 4 it is
evident that a reasonable match with the data is obtained
for 0.25 # Q 2 # 0.8. Observed strains from temperatures
within ;25 K of the transition point fall slightly below
the curve, as is seen more clearly in Figure 5 where the
same results are plotted against temperature instead of Q 2.
The discontinuities in e1 and e3 at 847 K from the fits are
e1,0 5 20.0024, e3,0 5 20.0014, i.e., slightly larger than
the values of e1,0 and e3,0 derived above from the mea-
surements of Bachheimer (1980, 1986) and Mogeon
(1988). Lattice parameter data at smaller temperature in-
tervals through the transition are needed to establish the
precise topology of the a quartz curves as T → Ttr and to
show whether the single neutron data point for b quartz
that suggests a significant strain ahead of the transition is
real.

As an aside, Levanyuk et al. (1993) have suggested
that, because of the effect of fluctuations, odd order terms
can appear in Landau free energy expansions for transi-
tions in which they would be otherwise be expected to
be forbidden by symmetry. The data for e1 were therefore
also considered in the light of a Landau expansion of the
form:

1 1 1
2 3 4G 5 a(T 2 T )Q 1 uzQz 1 bQ . (27)c2 3 4

In this case the equilibrium variation of Q is given by:
1/23 8 T 2 TcQ 5 Q 1 1 1 2 . (28)05 1 2 6[ ]4 9 T 2 Ttr c

The predicted variation of e1 becomes:
1/23 8 T 2 Tc1/2 1/2(e ) 5 (e ) 1 1 1 2 . (29)1 1,0 5 1 2 6[ ]4 9 T 2 Ttr c

If e1,0 5 22.0 3 1023 and Ttr 5 847 K as before, the
resulting fit is very poor and gives an unrealistic value of
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FIGURE 6. Variations of heat capacity for quartz (data from Gurevich and Khlyustov 1979; Grønvold et al. 1989). The broken
line represents the heat capacity of b quartz (Eq. 36), and the solid line represents the heat capacity of a quartz. The difference
between the two curves is the excess heat capacity, DCp, associated with the phase transition.

Tc ø 800 K. The experimental data alone do not prove
that a third-order term is zero but, if it exists in an oth-
erwise standard 246 potential, it is presumably small.

The volume strain at Ttr is given by 2e1,0 1 e3,0 and,
from the fit between Q 2 and the strains, is 26.3 3 1023.
Taking the unit-cell volume of b quartz as being 118.1
Å3 at 847 K gives a volume discontinuity of 20.744 Å3.
This corresponds to a molar volume reduction of 0.149
cm3. The more direct measurement of this discontinuity
from the macroscopic linear strain measurements of
Bachheimer (1980, 1986) and Mogeon (1988), 25.1 3
1023, gives 0.121 cm3/mol. Both values fall within the
range 0.11–0.21 cm3/mol reported in the literature (see
compilation in Table 7 of Ghiorso et al. 1979).

CALIBRATION OF LANDAU COEFFICIENTS

USING Cp DATA

Fitting the solution for Q as a function of T to some
set of data that is directly related to the driving order
parameter yields ratios between the Landau coefficients
but not their absolute values. A further measurement is
always needed, and for rapid structural phase transitions,
a useful property that can be measured with high preci-
sion is the excess heat capacity, DCp. In all Landau ex-
pansions of the type used above, only the excess free
energy, entropy and entropy are specified, and it is often
convenient to drop the prefix D. To avoid ambiguity the
prefix is retained in this section, however.

By definition, DCp of the transition is related to the
excess entropy DS ([ S in Eq. 6) by:

]DS
DC 5 T . (30)p ]T

Combining Equations 2, 6, and 7 gives:

½2 L 3 T 2 TcDS 5 1 1 1 2 . (31)5 1 2 6[ ]3 T 4 T 2 Ttr tr c

Differentiation of Equation 31 with respect to T and sub-
stitution into Equation 30 yields, after some algebraic
manipulation (see also, Aleksandrov and Flerov 1979;
Salje 1993):

2 2T 64(T 2 T ) 3 T 2 Ttr c c5 1 2
2 41 2 1 2[ ]DC a Q 4 T 2 Tp 0 tr c

264(T 2 T ) 48(T 2 T )Ttr c tr c c5 1
2 4 2 4a Q a Q0 0

48(T 2 T )Ttr c2 . (32)
2 4a Q0

A plot of the left hand side of this equation against T
should yield a straight line with slope [–48(Ttr 2 Tc)/
a2Q ]. In the present case, Ttr, Tc, and Q0 are all known,4

0

so the value of a can be determined.
Selected Cp data for quartz are shown in Figure 6. The

data for T # 298 K are from Gurevich and Khlyustov
(1979). The higher temperature data are from Grønvold
et al. (1989), including points from their Table 6 for T #
1400 K, and points from their Table 1 (series III, VIII),
and their Table 3 for 860 K # T # 1005 K. A polynomial
of the form:

Cp 5 a 1 bT 1 gT 2 1 dT 3 (33)

was fit to the data between 900 and 1400 K giving the
coefficients a 5 31.16, b 5 0.07889, g 5 25.311 3 1025,
d 5 1.235 3 1028, for Cp in J/(mol·K). This parameterized
curve was then extrapolated into the stability field of a
quartz to allow the difference DCp 5 Cp(a quartz) 2 Cp(b
quartz) to be determined as a function of temperature.
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FIGURE 7. Plot of excess heat capacity variation based on
Equation 32. The straight line is a least-squares fit to the data
between 825 and 845 K. An expanded region around Ttr in (a)
is shown in (b). The straight line extrapolates to zero at TI 5
849.7 K.

Figure 7 shows the plots suggested by Equation 32 using
these values for DCp. It should be anticipated that uncer-
tainties in DCp increase with increasing extrapolation of
the b quartz curve into the a quartz field. This is reflected
in the increasing divergence shown in Figure 7a, though
the fit remains consistent with the data down to ;760 K.
Similarly, the uncertainties in Cp for a quartz increase as
the transition point is approached from below because the
equilibrium heat capacity curve becomes steep. In the
close vicinity of the transition point other factors, such
as critical fluctuations or the presence of defects, can have
a significant effect on DCp (e.g., Salje 1988). The slope
used to calculate a value of the a coefficient was therefore
determined by least-squares fitting to values of (T/DCp)2

between 825 and 845 K. Only data from within ;1 K of
the transition point fall off this line and it also matches
data down to ;760 K.

The slope of the linear fit shown in Figure 7b is 2173.0
mol2·K3/J2 that, from the slope term in Equation 32 and
values of Ttr 2 Tc 5 7, Q0 5 0.377, yields a 5 9.8
J/(mol·K). Equation 3 then yields b* 5 21931 J/mol and
Equation 4 yields c* 5 10 190 J/mol. (Note that the sta-
tistically unrealistic number of significant figures for the
values of b* and c* is retained here to avoid subsequent
rounding errors).

An important test for internal consistency is a compar-

ison of the values of Ttr 2 Tc with the extrapolated tem-
perature, TI, at which (T/DCp)2 goes to zero. These three
temperatures are related in a standard way for first-order
transitions described by Equation 1 (easily derived from
Equation 32, or see Bachheimer and Dolino 1975):

(Ttr 2 Tc) 5 3(TI 2 Ttr). (34)

Physically, TI is the upper temperature limit for the meta-
stable persistence of a quartz with respect to b quartz
(the local minimum at Q ± 0 in the free energy curve,
G(Q), at TI . T . Ttr becomes a saddle point at T 5 TI).
For Ttr 5 847 K and Ttr 2 Tc 5 7 K, TI would be 849.3
K, which is in adequate agreement with TI 5 849.7 K
from the linear fit shown in Figure 7b.

A second test is a comparison of calculated and ob-
served latent heats for the transition. If a 5 9.8 J/(mol·K),
Ttr 5 847 K and Q0 5 0.377, then Equation 7 gives the
magnitude of the latent heat as 590 J/mol. This value
should be slightly greater than the observed value be-
cause the actual transition is between a quartz and the
incommensurate structure rather than directly between the
a and b forms. Other experimental determinations of the
latent heat are spread over a range from ;400 to ;800
J/mol (summarized in Table 6 of Ghiorso et al. 1979),
largely because of the inherent difficulty in measuring
any latent heat directly. Richet et al. (1982) quoted 655
J/mol and Drebushchak and Dement’ev (1993) gave 300–
400 J/mol. The Landau entropy change, S0 at T 5 Ttr, is
0.696 J/(mol·K) (from Equation 6 with Q0 5 0.377). Do-
rogokupets (1995) gave 0.335 J/(mol·K). Taking the Cla-
peyron Equation as dP/dT 5 S0/Vs,0 yields a P-T slope of
47 bar/K for the a ↔ b transition at 1 bar (using Vs,0 5
26.3 3 1023) that, again, falls within the experimental
range of 35–65 bar/K (Ghiorso et al. 1979).

A third comparison is with a hypothetical configura-
tional change in relation to the controversy as to whether
the transition is displacive or order-disorder in character
(reviewed most recently by Heaney and Veblen 1991; Ki-
hara 1993; Dolino and Vallade 1994; Heaney 1994). The
value of a 5 9.8 J/(mol·K) implies an excess entropy for
the change from Q 5 0 to Q 5 1 of 24.9 J/(mol·K) (Eq.
6). If the transition was purely order-disorder in character,
with each tetrahedron in a quartz being ordered and each
tetrahedron of b quartz being fully disordered between
two orientations, there would be a configurational entropy
change Sconfig 5 2R(½ln½ 1 ½ln½) 5 25.76 J/(mol·K).
These two entropies are sufficiently close as to be con-
sistent with order-disorder behavior but do not preclude
displacive character for the phase transition.

The excess heat capacity of a quartz with respect to b
quartz is given by:

2T
55 1.47 3 10 2 173.0 T (35)1 2DCp

which is the linear fit shown in Figure 7b. Cp for b quartz
can therefore be determined at any temperature below Ttr

simply by subtracting the Landau DCp value from the ob-
served Cp values of a quartz. A fit to the resulting Cp
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FIGURE 8. (a) Differences between the observed and calcu-
lated values of Cp for a quartz. The calculated values are given
by Cp for b quartz from Equation 36 plus DCp for the transition
from Equation 35. (b) Comparison between Cp data for b quartz
and the fit given by Equation 36. In a narrow temperature interval
above the transition point there is a small anomaly not accounted
for by the fit.

curve in the temperature range 300–1400 K, but exclud-
ing data for 840–900, is shown as a dotted line in Figure
6. It is described in a standard form by:

26 2C (b-quartz) 5 168.9 2 0.04064 T 1 8.567 3 10 Tp

2½ 6 222 2166 T 1 1.023 3 10 T (36)

Adding DCp from Equation 35 to Cp (b quartz) in Equa-
tion 36 gives the resulting curve for Cp (a quartz) shown
in Figure 6. Differences between the observed and cal-
culated values of Cp for a quartz are shown in Figure 8a.
Cp for b quartz could be determined for T , 300 K in
the same way, but the Landau solution used here does
not take into account the effect of order parameter satu-
ration. DCp is not likely to be correct quantitatively in this
interval.

Finally, Figure 8b shows a small tail in Cp above the
transition point, which is not accounted for in the present
analysis. A discrepancy of less than 1 J/(mol·K) remains
between the fit for b quartz (Eq. 36) and the observed
heat capacities, and presumably this reflects structural
changes ahead of the phase transition.

ELASTIC CONSTANT VARIATIONS AT T . Ttr

The observed elastic constant variations of quartz be-
tween ;300 and ;1100 K are shown in Figure 9 (data
from Atanasoff and Hart 1941; Atanasoff and Kammer
1948; Kammer et al. 1948; Zubov and Firsova 1962; Sha-
piro and Cummins 1968; Höchli 1970; Pelous and Vacher
1976; Unoki et al. 1984; Ohno 1995). In the stability field
of b quartz, C44 and C66 hardly vary at all with tempera-
ture, whereas C11, C33, C13, and C12 show a marked soft-
ening as T → Ttr. Elastic softening can occur as a tran-
sition point is approached from the high symmetry side
in systems where the relevant spontaneous strains are
coupled bilinearly with the driving order parameter. This
softening is not possible when the lowest order couplings
are of the form leQ 2, as in the present case (Eq. 8). The
observed softening cannot be due to critical fluctuations
of the order parameter because it occurs over a temper-
ature interval of apparently ;200 K. Rather it conforms
to a pattern also found in the high symmetry phases of
gadolinium molybdate (Höchli 1972) terbium molybdate
(Yao et al. 1981) and KMnF3 perovskite (Cao and Barsch
1988).

Following the theoretical analysis of Pytte (1970,
1971) and Axe and Shirane (1970), elastic softening in
the high symmetry phase ahead of an improper ferroe-
lastic or co-elastic transition has been considered in terms
of the effects of coupling between different vibrational
modes (Höchli 1972; Rehwald 1973; Cummins 1979; Lü-
thi and Rehwald 1981; Yao et al. 1981; Fossum 1985;
Carpenter and Salje, unpublished manuscript). The un-
derlying physical picture is the following: Associated
with a soft mode at some specific point in reciprocal
space, there is a set of branches that also soften to some
extent. Just as with the soft mode itself, the amplitudes
of modes along the soft branches should increase as their
frequencies decrease. They can combine to produce stress
fluctuations and, hence, strain fluctuations. The summa-
tion of all such combinations yields a net softening of
some specific acoustic modes and this is manifested as a
softening of the related elastic constants. The total effect
should increase as the amplitudes of the modes increase,
reaching a maximum at the transition point. The temper-
ature dependence of this fluctuation-induced softening is
generally described by:

0 KikC 2 C 5 DC 5 A |T 2 T | . (37)ik ik ik ik c

Aik and Kik are properties of the material of interest; their
subscripts are retained as labels to match with the cor-
responding Cik terms. The values of Kik are sensitive both
to the degree of anisotropy of dispersion curves about the
reciprocal lattice vector of the soft mode and to the extent
of softening along each branch (Axe and Shirane 1970;
Pytte 1970, 1971; Höchli 1972; Carpenter and Salje, un-
published manuscript). There are symmetry constraints
limiting which elastic constants can soften by this mech-
anism. First, the effect should be restricted to those elastic
constants that transform (in the group theoretical sense)
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FIGURE 9. Comparison between observed and calculated
elastic constant variations for quartz. For C11, C33, and C44 a dis-
tinction has been made between data from ultrasonic experiments
(open symbols) and data from Brillouin scattering experiments
(open symbols containing a dot). References to the sources of
data are given in the text. Two sets of calculated variations are

shown for C11, C12, C13, and C33, depending on how the bare
elastic constants, C , were determined. For one set, DC11 5 DC12

0
ik

and (DC13)2 5 DC11DC33 were assumed (solid lines); for the sec-
ond set DC11 5 DC12 5 DC13 5 DC33 was assumed (broken lines).
In the case of C13 the two curves are almost superimposed.

as the identity representation of the space group of the
high symmetry phase. Second, for elastically uniaxial
systems (i.e., including quartz) the DCik variations are re-
lated by: DC11 5 DC12 and (DC13)2 5 DC11DC33 (Axe and
Shirane 1970; Höchli 1972; Yamamoto 1974).

Values for the unknown parameters, C , Aik, and Kik
0
ik

have been obtained by fitting Equation 37 to the data of
Kammer et al. (1948) and Zubov and Firsova (1962) for
b quartz (with Tc 5 840 K). The two data sets show close
agreement over the temperature interval in which they
overlap (see Zubov and Firsova 1956). At first, each of
C11, C12, C13, and C33 was treated separately, producing a
range of values of K between 20.57 (K13) and 20.77
(K12). These fits did not produce the relationships K11 5
K12, A11 5 A12, 2K13 5 K11 1 K33, A13

2 5 A11A33, expected
on the basis of symmetry, however. The variations of C11,
C12, C13, and C33 are in fact almost parallel, which implies
that their DCik variations are virtually the same. A fit to
the average values [(C11 1 C12 1 C13 1 C33)/4] was there-
fore performed, yielding A 5 2201.0 GPa and K 5
20.65. The individual elastic constants were then refit
with these two parameters held constant, allowing values

for the bare elastic constants to be determined (listed in
Table 3). The value of C obtained from C 5 ½(C 20 0 0

66 66 11

C ) was 50.8 GPa, which is in close agreement with the0
12

observed variation of C66 shown in Figure 9. C 5 37.00
44

GPa was selected as an intermediate value between the
limits observed for C44 in b quartz. The elastic constant
variations above T 5 Ttr using these parameters are all
shown as solid lines in Figure 9.

As an alternative approach, the values of K11 and A11

obtained by fitting the C11 data alone were used in a fit
to the C12 data with C as the only variable parameter,0

12

which ensured DC11 5 DC12 as required by symmetry.
Values of K33 and A33 from fitting C33 data alone were
then combined with K11 and A11 to give K13 and A13. These
were used to fit the data for C13 and extract a value for
C . This procedure ensured that the relationship (DC13)20

13

5 DC11DC33 was also followed. The resulting parameter
values are listed in Table 3, and the fits are shown as
broken lines in Figure 9.

The two sets of bare elastic constants were carried
through to the calculation of elastic constants for a
quartz. As shown in the next section, they lead to slightly
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TABLE 3. Values for the coefficients in Equation 8, as used to
calculate the elastic constant variations associated
with the a ↔ b transition in quartz

DC11 5 DC12, (DC13)2 5 DC11DC33 DC11 5 DC12 5 DC13 5 DC33

4875
17218
1654

3.52
2.99

11.9
29.0
26.18

1.18
1.17

211.1
142.0
40.5
55.1

129.1
37.0
50.8
20.63

b (J/mol)
c (J/mol)
d (J/mol)
l1 (GPa)
l3 (GPa)
l4 (GPa)
l5 (GPa)
l6 (GPa)
l7 (GPa)
l8 (GPa)
l9 (GPa)
C (GPa)0

11

C (GPa)0
12

C (GPa)0
13

C (GPa)0
33

C (GPa)0
44

C (GPa)0
66

K11 5 K12

4634
17002
1599

3.38
2.97

11.9
29.0
26.18

1.13
1.17

211.1
138.3
36.8
54.0

131.2
37.0
50.8
20.65

20.61
20.60

2232.0
2190.5
2149.0

K13

K33

A11 5 A12

A13

A33

20.65
20.65

2200.9
2200.9
2200.9

Notes: Ttr 5 847 K, Tc 5 840 K, Q0 5 0.377, a 5 9.8 J/(mol·K), b* 5
21931 J/mol, c* 5 10 190 J/mol, d* 5 0.

FIGURE 10. Relationships between C44, C66, C14, and Q (for
Ttr 5 847 K, Tc 5 840 K). (a) The differences DC44 5 C44 2
C (triangles) and DC66 5 C66 2 (circles) are linear functions0 0C44 66

of Q2. (b) The variation of C14 may be approximated by a curve
of the form AQ 1 BQ3. Straight lines and curves are fits to the
data represented by filled symbols (from Atanasoff and Hart
1941; Zubov and Firsova 1962; Höchli 1970). Open symbols are
data of Ohno (1995); open triangles containing a dot are data of
Unoki et al. (1984).

different values for the strain-order parameter coupling
coefficients but do not substantially influence the form of
the elastic constant variations. The raw Cik data of b
quartz appear to be consistent with almost isotropic be-
havior with respect to (non-critical) fluctuations as T →
Ttr. It is not necessarily the case that the bare elastic con-
stants should be independent of temperature, but given
that C66 and C44 vary very little and the lattice parameters
of b quartz are approximately constant, any temperature
dependence for the values must be small.0Cik

Not surprisingly, these fits produce values for the co-
efficients that are similar to the values given by Höchli
(1972) for the same set of experimental data. Axe and
Shirane (1970) also analyzed the softening at T . Ttr, but
assumed K 5 21, which gives a fit that is not as good.

ELASTIC CONSTANT VARIATIONS AT T , Ttr

To calculate the elastic constants of a quartz using the
equations given in Table 1, it is necessary to have nu-
merical values for all the coefficients in Equation 8. Val-
ues of C extracted from the elastic properties of b quartz0

ik

were substituted into Equations 9 and 10. These equations
were then matched with the experimental relationships
between ei and Q (Eq. 26) to obtain the values for l1, l3,
l7, and l8. The results are listed in Table 3 for the two
alternative sets of C values. As before, the equilibrium0

ik

values of Q were calculated for Ttr 5 847 K and Tc 5
840 K. Both C44 2 C and C66 2 C are expected to0 0

44 66

vary linearly with Q 2, and the experimental data are con-
sistent with this (Bachheimer and Dolino 1975; Dolino
and Bachheimer 1982). The linear least-squares fits
shown in Figure 10a yielded l4 5 11.9 GPa, l6 5 26.18

GPa. C14 is expected to vary linearly with Q but does so
only over a limited temperature range below Ttr (Höchli
1970; Höchli and Scott 1971; Bachheimer and Dolino
1975; Dolino and Bachheimer 1982; Ohno 1995). To pro-
vide an approximate representation of the evolution of
C14, the next higher order coupling term permitted by
symmetry was added to Equation 8. This gives an ex-
pected dependence of C14 on Q of the form C14 5 l5Q 1
l9Q 3 (Table 1), and the fit shown in Figure 10b yielded
values of l5 5 29.0 GPa and l9 5 211.1 GPa.

Equation 21 provides the most convenient expression
for the inverse susceptibility, x21, as a function of Q. To
use this form it is necessary to have calculated values for
the unrenormalized Landau coefficients, b, c, and d.
These are readily determined using Equations 11–13; two
sets of values corresponding to the two sets of l and C 0

ik

values are given in Table 3. Conversion of units between
GPa, the standard units for elastic constants, and J/mol,
for the inverse susceptibility and the excess energies, de-
pends on the molar volume of the reference state. This
reference state is assumed to have a constant volume and
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FIGURE 11. Excess free energy (G), enthalpy (H), and entro-
py (S) associated with the a ↔ b transition (from Eqs. 1, 5, and
6, with values of the coefficients given in Table 3). The latent
heat, L (broken line), is 2590 J/mol.

constant values of C , which is not unreasonable given0
ik

the small thermal expansion observed above Ttr. The unit-
cell volume of b quartz has been taken as 118.1 Å3 at
847 K, corresponding to a molar volume of 2.37 m3/mol;
1 GPa is thus equivalent to 2.37 3 104 J/mol. Values of
the equilibrium susceptibility, from Equation 21, were
first calculated in joules per mole and converted to gi-
gapascals for substitution into the equations for C11, C12,
C13, and C33.

The calculated variations of each elastic constant in a
quartz are compared with experimental observations in
Figure 9. C44, C66, and C14 are merely fits to the experi-
mental values, and the quality of fit does not represent a
stringent test of the thermodynamic model. On the other
hand, the calculated values of C11, C12, C13, and C33 are
based on fits to experimental data that are entirely inde-
pendent of the measured elastic constants below Ttr. For
C11 and C12, the match is within reasonable experimental
uncertainty and is perhaps marginally better for the set of
parameters derived from constraining DC11 5 DC12 and
(DC13)2 5 DC11DC33 in b quartz (solid lines). Although the
calculated variations of C13 and C33 have the general form
of the observed variations, they do not match quantita-
tively. The choice of bare elastic constants can influence
the calculated variations to a limited extent but not
enough to explain the discrepancy. All the elastic con-
stants display a small discontinuity at T 5 Ttr.

The Landau expansion should yield isothermal values
of the elastic constants even though ultrasonic (i.e., adi-
abatic) data were used to derive values for the bare elastic
constants, C . This assertion is based on the observation0

ik

that the thermal expansion coefficients of b quartz, which
appear in the equation relating isothermal and adiabatic
elastic properties (Rehwald 1973; Nye 1985), are small.
Immediately below the transition point some divergence
between isothermal and adiabatic values is expected (Coe
and Paterson 1969; Dolino and Bachheimer 1982). Such
a divergence is not evident in Figure 9, however, perhaps
because of the first-order character of the transition,
which means that the transition occurs before the thermal
expansion coefficients become really large.

ENERGETICS OF THE a ↔ b TRANSITION

Variations of the total excess free energy, enthalpy, and
entropy of the a ↔ b transition (Eqs. 1, 5, and 6, with
values of the coefficients given in Table 3) are shown in
Figure 11. Different contributions to the free energy can
be compared by rewriting Equation 8 as:

G 5 GQ 1 Gcoupling 1 Gelastic (38)

where GQ is the excess energy associated with the driving
order parameter alone, Gcoupling is the total energy associ-
ated with coupling between Q and the spontaneous strain,
and Gelastic is the elastic energy, ½ Sik C eiek. For T 5 ½Ttr

0
ik

5 424 K as an example, the equilibrium value of Q is
0.857. Out of a total excess energy of 21085 J/mol at
this temperature, and using the set of coefficients derived
from assuming DC11 5 DC12, (DC13)2 5 DC11DC33 in b

quartz, the separate energy contributions are GQ 5 358
J/mol, Gelastic 5 1442 J/mol, and Gcoupling 5 22885 J/mol.
The stabilization of a quartz with respect to b quartz is
overwhelmingly dominated by the energy associated with
coupling of the order parameter with the spontaneous
strain. This coupling can also account for the first-order
character of the transition. The renormalized fourth-order
coefficient, b*, is 21931 J/mol, but its unrenormalized
value is ;4900 J/mol. The fourth-order term should thus
be positive and the phase transition thermodynamically
continuous in a clamped crystal with zero strain.

The soft zone center (B1) optic mode observed by Axe
and Shirane (1970), and Dolino et al. (1992) is generally
regarded as providing the driving mechanism for the tran-
sition (as reviewed recently by Heaney 1994; Dolino and
Vallade 1994). If this is correct, it should be possible to
link the energetics of the transition to the soft mode by
means of the susceptibility. The frequency of a classical
soft mode at T . Ttr is expected to depend explicitly on
the order parameter susceptibility as v2 } x21 (see, for
example, Bruce and Cowley 1981, or Dove 1993). Below
the transition point the same dependence is also expected,
but when coupling with a strain occurs, there may be
some doubt as to whether the soft mode frequency de-
pends on the renormalized or unrenormalized suscepti-
bility. The present analysis permits comparison of both
with the observed frequency. Data from Tezuka et al.
(1991) for the soft mode in b quartz are shown in Figure
12. The inverse susceptibility at T . Ttr is given by a(T
2 Tc) and has been plotted on the same figure (for a 5
9.8 J/mol and Tc 5 840 K). Vertical axes, in units of
inverse centimeters squared and joules per mole were ad-
justed so that the v2 and x21 variations coincide. Exper-
imental data from Höchli and Scott (1971) for the soft
mode frequency below Ttr and two sets of variations for
x21 are also shown on the same relative scale. If changes
in strain can occur on the same time scale as changes in
Q, the susceptibility of the soft mode is derived from the
fully renormalized Landau expansion (Eq. 1) as:
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FIGURE 12. Comparison between experimental data for the
frequency of the soft mode and the calculated susceptibility from
a Landau free energy expansion. A relationship of the form v2

} x21 is expected. The axes for v2 (right) and x21 (left) have
been adjusted so that, above Ttr, the experimental data for v2

(open circles, from Tezuka et al. 1991) are superimposed on the
calculated variation of x21 (solid line). Below Ttr, experimental
data for v2 are shown as filled circles (from Höchli and Scott
1971). Curve A is the fully renormalized susceptibility (Eq. 39)
and curve B is the unrenormalized susceptibility (Eq. 21). (Note
that the mismatch below Ttr could be reduced by choosing an
alternative scaling between v2 and x21 at T . Ttr).

2] G
21 2 4x 5 5 a(T 2 T ) 1 3b*Q 1 5c*Q . (39)c21 2]Q

This solution is curve A in Figure 12. If the response
time of the structure to changes in Q is much shorter than
the response time to changes in strain, the relevant sus-
ceptibility is given by Equation 21. Curve B in Figure 12
shows the calculated variation for the set of coefficients
derived from assuming DC11 5 DC12 and (DC13)2 5
DC11DC33 in b quartz. In this case the role of strain is only
to renormalize the shape of the potential well that deter-
mines the soft mode frequency. It more nearly reproduces
the steep recovery of v2 below Ttr, but neither solution
matches the observed soft-mode frequency changes. The
mismatch may indicate that either the soft mode is not
the only driving mechanism for the transition or the fre-
quency evolution of the B1 optic mode is substantially
modified by coupling with other modes. For example,
strong coupling occurs between low frequency modes at
the G point (zone center), at the zone boundary M point,
and along the G-M direction (Dolino and Vallade 1994
and references therein). If the numerical relationship be-
tween x21 and v2 at T . Ttr were rescaled by choosing a
smaller value of the a coefficient, for example, it might
be possible to obtain a closer match between x21 and v2

at T , Ttr. This model would imply that there are contri-
butions to the entropy other than those from the soft optic
mode. Finally, note that because of the steep recovery of
the soft mode below Ttr it is unlikely that thermal fluc-
tuations of the type responsible for the elastic softening
in b quartz have a significant role in the a quartz
structure.

GEOMETRICAL ASPECTS OF THE TRANSITION

MECHANISM

The a ↔ b transition has been described in purely ge-
ometrical terms as rotations of SiO4 tetrahedra about the
^100& axes (Höchli and Scott 1971; Megaw 1973; Grimm
and Dorner 1975; and many subsequent authors). The ro-
tation angle, f, is generally considered to be the micro-
scopic order parameter; f 5 0 in b quartz and f ø 16.38
in a quartz at room temperature. These rotations are then
held to be responsible for the macroscopic lattice strains.
In this context, Grimm and Dorner (1975) separated three
effects. First, rotation of rigid tetrahedra produces a direct
reduction of the lattice parameters of the framework. Sec-
ond, the rotations cause a reduction in the Si-O-Si bond
angle, and this reduction is correlated with an increase in
the Si-O bond lengths. Third, the tetrahedra are subject
to a shearing deformation that gives a net increase in the
direction of the c axis. All three processes are interde-
pendent and are due to a change in the nature of the Si-
O bonds with temperature. In principle, non-linearities in
the macroscopic strains must reflect some non-linearities
in these microscopic distortions.

Rotations of rigid tetrahedra only produce macroscopic
spontaneous strains that scale closely with f 2 (Grimm
and Dorner 1975). The standard argument for this is sim-
ple. Rotation through an angle f produces changes in the
a and c parameters that vary with cosf (Taylor 1972;
Megaw 1973). Expanding cosf gives:

1 1
2 4cos f 5 1 2 f 1 f 2 . . . (40)

2 24

For f 5 0.28 rad (;168), the fourth order term is only
;1% (;0.0003) of the second order term (;–0.039).
Even for such large rotation angles, therefore, the higher
order contribution to the change in lattice parameters is
negligibly small.

There is a well-recognized correlation between de-
creasing Si-O-Si bond angles and increasing Si-O bond
lengths in framework silicates (Hill and Gibbs 1979). The
mean Si-O bond lengths, dSi-O, appear to vary linearly
with f2 (Fig. 13), though the correlation remains empir-
ical (data from Kihara 1990, both for dSi-O and for f cal-
culated using the equation given by Grimm and Dorner
1975; Dolino and Bachheimer 1982; Lager et al. 1982).
This microscopic contribution to the macroscopic strain
is a more or less isotropic expansion of the whole
framework.

The effects of shearing are evident in the c/a ratio. As
shown by Smith (1963), this ratio must be less than or
equal to 1.0981 if the SiO4 tetrahedra in quartz are per-
fectly regular. It is expected to decrease as the Si-O-Si
angle decreases and f increases but the reverse is actu-
ally observed (Lager et al. 1982; Fig. 14a). There seems
little doubt that the tetrahedra are significantly deformed
(Smith 1963; Megaw 1973; Grimm and Dorner 1975; La-
ger et al. 1982; Barron et al. 1982). The contribution of
this deformation to the macroscopic strain can be esti-
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FIGURE 13. Linear variation of the mean Si-O bond length,
dSi-O, with the square of the rotation angle, f , of tetrahedra about
the ^100& axes. Data from Kihara (1990), using the Equation of
Grimm and Dorner (1975) to calculate f from structural data.

FIGURE 14. (a) The c/a ratio for a quartz should be less than
that of b quartz if the transition is due to rotations of tetrahedra
that remain rigid. Open circles 5 neutron data; crosses 5 X-ray
data. Data from Kihara (1990) are also shown for comparison
(open diamonds). The observed increase with falling temperature
indicates that the tetrahedra become progressively deformed with
falling temperature. The ratio c/a appears to behave in a similar
manner to other excess properties and can be converted into an
effective shear strain, D(c/a), using Equation 41. (b) For 0.3 ,
Q2 , 0.9, D(c/a) (open triangles) scales linearly with Q2 (for Ttr

5 847 K, Tc 5 840 K). The data for e1 2 e3 (open circles) show
a similar linear variation, but the data for e1 1 e3 (filled circles)
do not. (c) The fit to a Landau solution for a first order transition
(solid line) for e1 2 e3 between 300 and 800 K gives Ttr 2 Tc 5
8.4 K (for Ttr 5 847 K).

mated as follows. For f ø 168, rotations of rigid tetra-
hedra would give strains of e1,rot 5 20.025 and e3,rot 5
20.040 (using the equations of Grimm and Dorner 1975,
for a and c as functions of f ). At the same time, the
mean Si-O bond distance would increase by ;1.4% (from
Fig. 13). Treating this as a more or less isotropic effect
in relation to the whole framework yields contributions
to both strains of e1,d ø e3,d ø 0.014. The observed room
temperature values of e1 and e3 are 20.016 and 20.010,
respectively, which leaves contributions from shearing of
e1,sh ø 20.005 and e3,sh ø 10.016 (e1 5 e1,rot 1 e1,d 1 e1,sh,
etc.). The contribution of the shearing component to the
volume strain, 2e1,sh 1 e3,sh 5 0.006, is small relative to
the total volume strain of 2e1 1 e3 5 20.042, indicating
that this part of the total deformation is indeed close to
pure shear.

From this semi-quantitative analysis it is clear that the
macroscopic consequences of the three geometrical ef-
fects discussed by Grimm and Dorner have similar mag-
nitudes. By a process of elimination, the non-linear strain
behavior might be attributed to the shearing of the tetra-
hedra. The effects of such shearing on a macroscopic
scale can be examined further by focussing on the vari-
ation of c/a with temperature, which closely resembles
the typical evolution of ‘‘excess’’ properties caused by a
phase transition (Fig. 14a). Accordingly, an effective
shear strain D(c/a) may be defined as:

(c/a) 2 (c/a)0D(c/a) 5 (41)
(c/a)0

where (c/a)0 is the ratio for b quartz extrapolated to T ,
Ttr. With the exception of four data points from temper-
atures between ;815 and ;842 K and data from below
room temperature (the latter showing the influence of or-
der parameter saturation), this effective shear strain ap-
pears to vary linearly with Q 2 for Ttr 5 847 K, Tc 5 840
K (Fig. 14b).

Such a shear parameter is not a properly constituted
strain in the thermodynamic sense. In particular, this pa-

rameter is not related in a simple way to any eigenvector
of the elastic constant matrix of b quartz. For a more
rigorous formal analysis, reference to the eigenvalues and
eigenvectors of the elastic constant matrix of materials
with crystallographic point group 622 is required. These
are listed in Table 4 (examples of this type of symmetry
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TABLE 4. Eigenvalues and eigenvectors of the elastic constant matrix for point group 622 (Laue class 6/mmm)

Irreducible
representation Eigenvalue Eigenvector

Symmetry-adapted
spontaneous strain

A1

1
2 2 ½(C 1 C 1 C ) 2 [(C 1 C 2 C ) 1 8C ]5 611 12 33 11 12 33 132

(a, a, b, 0, 0, 0)* e 1 e ; e1 2 3

A1

1
2 2 ½(C 1 C 1 C ) 1 [(C 1 C 2 C ) 1 8C ]5 611 12 33 11 12 33 132

(a9, a9, b9, 0, 0, 0)* e 1 e ; e1 2 3

E1

C445C44

A(0, 0, 0, 1, 0, 0)*
B(0, 0, 0, 0, 1, 0)

e4

e5

E2

(C 2 C ) 11 12


(2)C † 66

*1 1
D , 2 , 0, 0, 0, 01 2Ï2 Ï2

E(0, 0, 0, 0, 0, 1)

1
(e 2 e )1 2Ï2
1

e †61 2Ï2

* 2a2 1 b2 5 2a92 1 b92 5 1, 2aa9 1 bb9 5 0, A2 1 B 2 5 D2 1 E2 5 1.
† The E2 eigenvalues are required to be identical but, as an artifact of the convention used to reduce Cijkl to Cik, come out as (C11 2 C12) and C66.

Because C66 5 ½(C11 2 C12) in hexagonal systems, a factor of two must be applied to C66 and a corresponding factor of 1/Ï2 to e6 (shown in brackets)
to give the correct degeneracies.

analysis are given elsewhere in the literature; see Boccara
1968; McLellan 1973; Cowley 1976; Bulou 1992; Bulou
et al. 1992; Carpenter and Salje, unpublished manuscript).
The important point is that there are two degenerate ei-
genvalues associated with the identity representation, A1.
The spontaneous strains associated with these are derived
from the eigenvectors and correspond to combinations of
strains parallel and perpendicular to the c axis in different
proportions. One must have contributions to both (e1 1
e2) and e3 with the same sign, whereas the second must
have contributions to (e1 1 e2) and e3 with opposite sign
(also see McLellan 1973). It is tempting to associate the
first, erot, with strains arising from the tetrahedral rotations
and the variations in mean Si-O bond lengths and the
second, esh, with shearing of the tetrahedra (lengthening
parallel to c and shortening perpendicular to c). They are
orthogonal by definition, and are thus able to couple in-
dependently with the driving order parameter. If the ro-
tation angle f is not a linear function of Q, the overall
microscopic and macroscopic strain behavior could be
described by:

2 4 2e 5 AQ 1 BQ } f (42)rot

2 4 2e 5 Cf 1 Df } Q (43)sh

where A, B, C, and D are effective coupling constants.
It is not straightforward to obtain values for the param-

eters a, a9, b, b9 in the eigenvector expressions, but a
combination of strains that can be used as an approxi-
mation for the macroscopic shearing is the difference e1

2 e3. This difference also varies almost linearly with Q 2

between ;300 and ;800 K, in marked contrast with the
sum e1 1 e3 (Fig. 14b). If e1 2 e3 scales with Q 2, the
same procedure as used for analyzing the temperature de-
pendence of the volume strain can be applied using Equa-
tions 2 and 25. The resulting fit to data for e1 2 e3 in the
range 300–800 K is shown in Figure 14c, with Ttr 2 Tc

5 8.4 K (for Ttr 5 847 K). Over many hundreds of de-
grees the evolution of this shearing parameter is thus al-

most indistinguishable from the second harmonic gener-
ation (SHG) parameter of Bachheimer and Dolino (1975).

Taken at face value, the macroscopic shearing of the a
quartz structure appears to vary linearly with Q 2, the in-
dividual strains e1 and e3 vary with AQ 2 1 BQ 4, but con-
tributions from rotations of rigid tetrahedra and increased
mean Si-O bond lengths vary linearly with f2. Because
the volume strain is given by Vs 5 e1 1 e2 1 e3, to a
good approximation, the non-linear coupling with Q 2 ap-
pears in the excess volume associated with the transition.
There is, therefore, some question as to the relationship
between the macroscopic order parameter and the tetra-
hedral rotations. Values of f quoted in the literature have
been derived from the structural study of Young (1962)
(e.g., Grimm and Dorner 1975; Crane and Bergman 1976;
Dolino and Bachheimer 1982; Dolino et al. 1983; Dolino
1988, 1990). They are plotted against Q (for Ttr 5 847
K, Tc 5 840 K) in Figure 15, as are values extracted from
the refinements of Kihara (1990) and from SHG data by
Crane and Bergman (1976). The data from Young (1962)
show a linear correlation, with some scatter, whereas the
data from Kihara (1990) are more consistent with a non-
linear correlation. Further structural studies may be need-
ed to test this possibility.

In the lattice parameters obtained by neutron diffrac-
tion and in the strain parameters derived from them there
is some suggestion of a change in trend at ;650 K (at
Q 2 ø 0.53 in Figs. 4 and 14b, for example). The variation
of c/a with unit-cell volume has been taken in the past
as an indicator of how uniformly the thermal expansion
mechanisms of a quartz operate over a wider temperature
interval (Lager et al. 1982). The neutron data show an
almost linear relationship from the transition temperature
down to ;300 K (Fig. 16) but there is also a hint of a
break in slope at c/a ø 1.0968 (;650 K). The changes
are small and require further investigation but could sig-
nal some change in the relationship between shearing and
rotations of the tetrahedra. As T increases above Ttr, c/a
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FIGURE 15. Relationships between the rotation angle f and
the macroscopic order parameter, Q (for Ttr 5 847 K, Tc 5 840
K). Open circles: values of f extracted from structure refine-
ments of Kihara (1990). Stars 5 data of Young (1962) in Dolino
(1990). Crosses 5 values of f calculated from SHG data by
Crane and Bergman (1976). The straight line is a guide to the
eye through the relatively scattered data from Young (1962). The
curve is a fit of an equation with the form f 5 AQ 1 BQ2 to
the data of Kihara (1990).

FIGURE 16. Neutron diffraction data showing that the c/a
ratio varies smoothly with unit-cell volume for both a and b
quartz. The straight line was fit to the data points with values of
V in the range ;115–116.2 Å3, corresponding to the temperature
interval ;670–780 K. It passes through the data points for b
quartz close to Ttr (V ø 118 Å3), but seems to highlight a small
change in trend below V ø 115 Å3 (;650 K).

decreases at constant volume, and there is also a different
trend in the low-temperature region of order parameter
saturation.

DISCUSSION

As found by previous authors, the Landau 2-4-6 po-
tential provides a basis for describing the changes in
physical properties that accompany the a ↔ b transition
in quartz. The new determination of strain behavior and
analysis of both elastic constants and heat capacity data
confirm that this potential can be used to link different
physical effects associated with the transition, but they
also highlight some discrepancies. The internally consis-
tent set of values determined for the three temperatures,
Tc, Ttr, and TI, from studies of the soft mode, the phase
transition temperatures, SHG and Cp data, in principle
place tight constraints on the evolution of the macroscop-
ic order parameter, Q. The two sets of lattice parameters
presented here were obtained by entirely independent
methods from the same original quartz sample. They are
indistinguishable within reasonable experimental uncer-
tainty and overlap with other data from the recent liter-
ature (e.g., Fig. 4 and Fig. 14a). The evolution of the
strain parameters is also well-constrained. What appears
to be unusual is the nature of coupling between the strains
and the driving order parameter. The only other materials
known to us to develop strains that do not correlate sim-
ply with the lowest order function of Q permitted by sym-
metry are albite and BiVO4 (Salje et al. 1985; David and
Wood 1983; Carpenter et al., unpublished manuscript).
However, it is not only the strain coupling that behaves
anomalously. Both the elastic constant C14 (data in Fig.
10b) and the piezoelectric coefficient d11 (data of Cook

and Weissler 1950) show substantial deviations from the
linear variation with Q expected on symmetry grounds
(Bachheimer and Dolino 1975; Dolino and Bachheimer
1982).

The quality of fit between the calculated and observed
variations of C11, C12, C13, and C33 in a quartz provides
a necessary (but not sufficient) test of the form of cou-
pling between Q and strain in the full Landau expansion
(Eq. 8). Extraneous experimental factors in the elasticity
measurements do not seem relevant. No systematic dif-
ference exists between results from Brillouin scattering
or ultrasonic experiments, and the more recent room
temperature elastic constant data of Wang et al.(1992)
are barely distinguishable from the older data. In this
context, close agreement between the observed and cal-
culated variations of C11 and C12 is encouraging. On the
other hand, failure to reproduce the variation of C33 be-
low ;700 K more precisely than shown in Figure 9
indicates that, although the overall analysis gives a fair
representation of the complete strain and elastic behav-
ior, strain parallel to the c axis has not been accounted
for entirely correctly. The model inherent in Equation 8
incorporates the assumptions that only one order param-
eter is needed to describe the structural evolution of a
quartz with respect to b quartz and that each strain can
be described by a single, continuous curve (Fig. 4). The
apparent breaks in behavior of the strains at ;650 and
;800 K signify that these are oversimplifications. One
possibility is that the relative contributions of tetrahedral
rotations and tetrahedral shear differ in three tempera-
ture intervals: 847–800 K, 800–650 K, and 650–300 K.
In other words, there is an additional degree of freedom
in the system. Alternatively, some different distortion
might be initiated at ;650 K, in which case the addi-
tional strain below this temperature must be accounted
for separately. Megaw (1973) has commented on the fact
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FIGURE 17. Variations of the eigenvalues of the elastic con-
stant matrix for crystals with point group 622 (T . Ttr) and
point group 32 (T , Ttr). Expressions for the eigenvalues of
622 crystals are given in Table 4. (E1 is plotted as C44; E2 is
plotted as C66). A1 eigenvalues of crystals with 32 symmetry
have the same form as those of crystals with 622 symmetry.
The smooth curves were determined from the calculated vari-
ations shown in Figure 9 (data from solutions derived from
assuming DC11 5 DC12 and (DC13)2 5 DC11DC33 in b quartz).
Solid lines represent the A1 eigenvalues; broken and dotted
lines represent the other eigenvalues. Each of the E1 and E2

eigenvalues of b quartz splits into two in a quartz. Experimen-
tal data points for A1 eigenvalues are shown below Ttr (data
from Ohno 1995). There is reasonable agreement between cal-
culated and experimental data over the complete temperature
range for one of the A1 eigenvalues and close agreement over
the range Ttr to ;750 K for the other. Neither of the A1 eigen-
values reaches zero at the transition point.

that the Si atoms seemingly start to move off-center
within their tetrahedra near 450 8C (723 K). Finally, just
below Ttr the transition could involve a mix of displacive
and order-disorder character.

From a purely energetic point of view, the phase tran-
sition is driven overwhelmingly by coupling of the order
parameter with strain. The overall conclusion is similar
to that of Tautz et al. (1991) who considered the impor-
tance of volume reduction from the perspective of phonon
interactions. For a combination of structural and sym-
metry reasons, the b quartz structure is unable to reduce
its volume with falling temperature. The B1 soft optic
mode effectively provides a mechanism by which to
break the symmetry, and once the symmetry is reduced,
the a quartz structure is able to resume a more normal
pattern of thermal expansion. The energetic contribution
of the soft mode to the transition mechanism is small.

Rather than displaying thermal expansion, the b struc-
ture is subject to significant thermal fluctuations. The ob-
served pattern of elastic softening suggests that it behaves
as a more or less isotropic medium with respect to these
fluctuations. Not only are DC11, DC12, DC13, and DC33 very
similar (under the assumption of constant C ), but also0

ik

the exponents Kik have values between 20.5 and 21. The
value of K is known to be sensitive to the degree of an-
isotropy of dispersion curves around the reciprocal lattice
vector of the soft mode and to the extent of softening
along each branch (Axe and Shirane 1970; Pytte 1970,
1971; Höchli 1972; Carpenter and Salje, unpublished
manuscript). A value of K 5 20.5 is expected if the
branches of the soft mode all soften more or less uni-
formly in three dimensions (Carpenter and Salje, unpub-
lished manuscript). Such a uniform effect is in part borne
out by investigations of the lowest frequency acoustic
modes. Softening has been observed along a* (Boysen et
al. 1980; Berge et al. 1986) and plays a crucial role in
stabilizing the incommensurate phase just above Ttr (Do-
lino 1988, 1990; Tautz et al. 1991; Dolino et al. 1992;
Vallade et al. 1992; Dolino and Vallade 1994). Calculated
dispersion relations indicate that an acoustic branch is
also relatively flat along c* and softens uniformly as T
→ Ttr (e.g., Kihara 1993). This softening is presumed to
occur as a consequence of softening of the soft optic
mode. Nearly isotropic behavior is also reflected in the
similar values of the coupling constants for the macro-
scopic strains parallel and perpendicular to the c axis of
a quartz.

Our understanding of the geometrical and thermody-
namic features of the a ↔ b transition in quartz clearly
remains incomplete. The elastic properties give addi-
tional insights but to what extent can the transition be
regarded as having an elastic origin? The B1 soft optic
mode is associated with the active representation for the
transition and provides the mechanism for breaking
symmetry. Coupling with strain then gives elastic anom-
alies associated with the identity representation. Mc-
Lellan (1973) suggested that one of the A1 eigenvalues
of the elastic constant matrix might extrapolate to zero

at the transition point in much the same way that eigen-
values associated with the active representation can
evolve at a proper ferroelastic transition (Rehwald 1973;
Cowley 1976; Lüthi and Rehwald 1981; Wadhawan
1982; Toledano et al. 1983; Bulou et al. 1992; Carpenter
and Salje, unpublished manuscript). Following Mc-
Lellan (1973), variations in the numerical values of the
eigenvalues given in Table 4 (for point group 622) have
been calculated using the set of data derived from as-
suming DC11 5 DC12, (DC13)2 5 DC11DC33. An equivalent
set of expressions for point group 32 was used to cal-
culate the eigenvalues of a quartz. These variations are
all shown in Figure 17. Data from Ohno (1995) were
used to compute experimental values of the A1 eigen-
values, for comparison.

Anomalies in the elastic behavior are indeed predom-
inantly associated with the eigenvalues of the A1 (iden-
tity) representation. Above Ttr, one eigenvalue shows the
fluctuation induced softening while the other displays a
more classical form, being effectively constant. (The
small dip close to Ttr of the latter is highly sensitive to
the extrapolated values of C and may or may not be0

13
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real). Both show softening as Ttr is approached from be-
low, and the calculated variations match the experimental
data down to ;700 K (Fig. 17). There is no evidence that
either approaches zero in value. In this regard, the elastic
behavior is entirely consistent with the behavior of a clas-
sical co-elastic material (Salje 1993). On the other hand,
the individual elastic constant C13 extrapolates to zero at
847 6 1 K from T . Ttr (see Fig. 9). By itself, this cannot
lead to an elastic instability, but it corresponds to a lim-
iting point beyond which the elastic energy ½C13e1e3 for
e1 and e3 with the same sign becomes negative, i.e., start-
ing to favor simultaneous contraction parallel and per-
pendicular to the c axis. Furthermore, the temperature in-
terval below Ttr over which e1 and e3 do not conform to
the predicted pattern (Fig. 5) corresponds to the temper-
ature interval over which C13 remains negative in a
quartz. In any macroscopic model of the transition, the
elastic properties may not be regarded as driving the tran-
sition, but they are certainly associated with most of the
energy change.
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Höchli, U.T. and Scott, J.F. (1971) Displacement parameter, soft-mode
frequency, and fluctuations in quartz below its a-b phase transition.
Physical Review Letters, 26, 1627–1629.

Hosieni, K.R., Howald, R.A., and Scanlon, M.W. (1985) Thermodynam-
ics of the lambda transition and the equation of state of quartz. Amer-
ican Mineralogist, 70, 782–793.

Hughes, A.J. and Lawson, A.W. (1962) Cylindrical approximation and
the a-b quartz transition. Journal of Chemical Physics, 36, 2098–
2100.

Kammer, E.W., Pardue, T.E., and Frissel, H.F. (1948) A determination
of the elastic constants for beta-quartz. Journal of Applied Physics,
19, 265–270.

Kihara, K. (1990) An X-ray study of the temperature dependence of the
quartz structure. European Journal of Mineralogy, 2, 63–77.

(1993) Lattice dynamical calculations of anisotropic temperature
factors of atoms in quartz, and the structure of b-quartz. Physics and
Chemistry of Minerals, 19, 492–501.

Klement, W., Jr. and Cohen, L.H. (1968) High-low quartz inversion:
thermodynamics of the lambda transition. Journal of Geophysical Re-
search, 73, 2249–2259.

Lager, G.A., Jorgensen, J.D., and Rotella, F.J. (1982) Crystal structure
and thermal expansion of a-quartz SiO2 at low temperature. Journal
of Applied Physics, 53, 6751–6756.

Levanyuk, A.P., Minyukov, S.A., and Vallade, M. (1993) Fluctuation-
induced first-order phase transitions near mean-field tricritical points
in solids. Journal of Physics, Condensed Matter, 5, 4419–4428.
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