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INTRODUCTION

Spinels are ubiquitous minerals in the Earth’s mantle and
crust. Because of the additional importance of spinels as fur-
nace smelting products, phase relations and thermodynamic
properties of spinels have been investigated by numerous au-
thors (among many others: Turnock and Eugster 1962;
Buddington and Lindsley 1964; Muan et al. 1972; Bohlen et
al. 1986; Nell et al. 1989; Nell and Wood 1989; Woodland and
Wood 1990; Nell and Wood 1991; Sack and Ghiorso 1991).
Many of these studies have focussed on thermodynamic mix-
ing properties of spinels, aiming to understand better the be-
havior of complex solid solutions, which is a prerequisite for
thermodynamic calculation of phase relations in complex, natu-
ral compositions.

It is surprising, however, that fundamental thermodynamic
properties for many spinels of end-member composition (e.g.,
MgCr2O4, FeCr2O4, FeAl2O4, ZnCr2O4, ZnAl2O4), which should
be well known before attempting to understand complex solid
solutions, are only poorly understood. For example, Klemme
and O’Neill (1997) and Klemme et al. (2000) investigated the
standard entropy of some selected Cr- and Fe-bearing spinels.
Their results, employing high-pressure high-temperature ex-
periments and adiabatic calorimetry at low temperatures, indi-
cated large contributions to the standard entropy probably due
to magnetic ordering or phase transitions at very low tempera-
tures (e.g., at 12.5 K in the case of MgCr2O4). Previous heat-
capacity measurements for these phases (Shomate 1944) missed
the entropy contribution from these transitions because calori-
metric measurements for these phases were performed only
down to temperatures of around 50 K. This is the case for many
other phases of interest to geologists, as most fundamental calo-
rimetric studies were done in the 1940s and 1950s when low-
temperature equipment did not allow studies at temperatures
much lower than 50 K.

There are several other phases of geological interest that
undergo magnetic ordering or exhibit phase transitions at tem-
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ABSTRACT

The low-temperature heat capacity of hercynite (FeAl2O4) was measured between 3 and 400 K,
and thermochemical functions were derived from the results. The measured heat-capacity curve
shows a small lambda-shaped anomaly peaking at around 13 K. From our data, we suggest a stan-
dard entropy for hercynite at 298.15 K of 113.9 ! 0.2 J/(mol·K), which is some 7.6 J/(mol·K) higher
than reported previously by a calorimetric study that missed the entropy contributions of the low-
temperature anomaly.

peratures lower than 50 K. One of these phases is hercynite
(FeAl2O4). Previous heat-capacity measurements for FeAl2O4

extended only down to 51 K (King 1956), and the standard
entropy of FeAl2O4 at 298.15 K (S0

298.15) was calculated using a
smooth extrapolation to 0 K without consideration of possible
magnetic contributions to the entropy [S0

298 = 106.3 J/(mol·K);
King 1956]. Although magnetic ordering phenomena were sub-
sequently reported to occur at around 8 K (Lotgering 1962;
Roth 1964), many recent thermodynamic databases (e.g.,
Kubaschewski and Alcock 1983; Kubaschewski et al. 1993;
Barin 1995; Robie and Hemingway 1995; Binnewies and Milke
1999) accept King’s (1956) value for the standard entropy for
FeAl2O4. However, internally consistent sets of thermodynamic
data (calibrated using mainly high-pressure, high-temperature
experiments) indicate much higher values for the standard en-
tropy but estimates of S0

298 for hercynite (FeAl2O4) vary sub-
stantially (Table 1).

Thermodynamic properties of FeAl2O4 are especially im-
portant to metamorphic geologists, as geothermobarometry of
high-grade metamorphic rocks is based on several exchange
equilibria involving hercynite, such as 3 FeAl2O4 + 3 Al2SiO5

= Fe3Al2Si3O12 + 5 Al2O3 or 3 FeAl2O4 + 5 SiO2 = Fe3Al2Si3O12

+ 2 Al2SiO5. These exchange equilibria have been investigated
experimentally at high pressures and high temperatures by
Hensen and Green (1971), Bohlen et al. (1986), and Shulters
and Bohlen (1989). Extrapolation to more complex composi-
tions (as to approximate natural compositions) or other tem-
peratures and pressures than the experimental conditions
requires a sound understanding of the thermodynamic proper-
ties of all involved end-member components as well as the ap-
propriate mixing properties. For the aforementioned equilibria,
thermodynamic properties of the end-members Al2SiO5, Al2O3,
SiO2, and Fe3Al2Si3O12 are sufficiently well understood (Robie
and Hemingway 1995; see Anovitz et al. 1993 for discussion).
However, those of FeAl2O4 are somewhat uncertain due to pos-
sible entropy contributions from magnetic ordering at low tem-
peratures (Lotgering 1962; Roth 1964; Sack and Ghiorso 1991).

Moreover, thermodynamic phase-equilibria calculations in
compositions approximating the Earth’s upper mantle (e.g., the
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MELTS software: cf., Ghiorso and Sack 1995; Gaetani et al.
1998) cannot be performed with much confidence if thermo-
dynamic functions of even simple end-member spinels, such
as FeAl2O4, FeCr2O4, or MgCr2O4, which are ubiquitous end-
member components of upper mantle spinels, are not suffi-
ciently well known.

To partially address the aforementioned matters, the present
study was initiated to determine the low-temperature heat ca-
pacity of hercynite (FeAl2O4) between 3 and 400 K.

EXPERIMENTAL TECHNIQUES

Sample preparation and characterisation
Heat-capacity measurements were performed on synthetic

polycrystalline hercynite samples. Fe2O3 (purity 99.99%) and
Al2O3 (purity 99.99%) were mixed in appropriate proportions
in an agate mortar under acetone. The mixture was then pressed
into pellets (1.27 cm diameter) and sintered in a conventional
gas-mixing vertical furnace at atmospheric pressure and 1400
C for 24 hours using a gas mixture of CO/CO2 = 75/25. The

pellets were then quenched in the cold part of the furnace. Fol-
lowing the procedure of Harrison et al. (1998), the samples
were then reground, repressed, and reannealed (using a gas
mixture of CO/CO2 = 85/15) at 1400 C for 18 hours, 1100 C
for 48 hours, and 700 C for 48 hours, before being rapidly
quenched. X-ray diffraction indicated the presence of only
FeAl2O4, as no impurities or other unreacted oxides were de-
tected. Our synthetic hercynite had a cell parameter of a0 =
8.1457 ! 0.0006 Å, which compares reasonably well with pre-
vious results for synthetic hercynites (Woodland and Wood
1990; Larsson et al. 1994; Harrison et al. 1998). The pellets
weighed 7.97 g. Mössbauer spectra of our hercynite sample
were obtained at room temperature to check for Fe3+. A sample
of 3.59 mg was used with a 57Co source in Pd. Duplicate spec-
tra were recorded in 512 channels of a multichannel analyzer
using a velocity range of !5 mm/s. The Mössbauer spectrum
consisted of broad lines with flat tops, mainly caused by Fe2+.
The spectrum also indicated a weak doublet with a small qua-
drupole splitting and chemical shift indicative of Fe3+. A fit to
the spectrum yielded a Fe3+/"Fe of 0.033 (ca. 2% Fe3O4 com-
ponent). This small Fe3+ content in synthetic hercynites was
also observed in a number of previous studies (Rossiter 1965;
Ono et al. 1966; Bohlen et al. 1986), and is apparently too small
to be resolved by both X-ray diffraction and low-temperature
calorimetry.

Low-temperature calorimetry
The calorimeter used, laboratory-designation CAL V, has

been described before (van Miltenburg et al. 1987). More re-
cent improvements in design and data-handling were described
in van Miltenburg et al. (1998). Temperature was measured
with a calibrated 27 ohm Rh/Fe thermometer (calibration by
Oxford Instruments), using an automated AC bridge (Tinsley).
The thermometer scale applied was the ITS-90 scale (Preston-
Thomas 1990). The sample was broken into several grains of
about 2 mm. A helium pressure of 1000 Pa was established to
the sample chamber to promote heat exchange. Measurements
were made in the intermittent mode. Stabilization periods of
about 500 s were used in between the heating periods. Below
30 K, the periods were on the order of 150 s. Every tempera-
ture interval was measured at least twice, but between 4 and 30
K, the measurements were repeated four times.

Below 30 K, the reproducibility of the calorimeter is about
1%, between 30 and 100 K, 0.05–0.1%, and above 100 K,
0.03%. Checking the calorimeter with standard materials (n-
heptane and synthetic sapphire) showed no deviations larger
than 0.2% from the recommended values.

RESULTS AND DISCUSSION

The experimental values for the low-temperature heat ca-
pacity of hercynite are compiled in Table 2. The values have
been corrected for the contribution of the empty calorimeter.
The uncertainties for the heat capacities were assumed to be
within 0.2%.

Figure 1 depicts the heat capacity of FeAl2O4 as a function
of temperature. The data fit a smooth and continuous curve at
temperatures above 43 K, whereas below 43 K, the data indi-
cate a lambda transition between 4 and 43 K, peaking at around
13 K (Figs. 2 and 3). This transition was previously observed
in early magnetic susceptibility measurements by Roth (1964)
and is probably due to a paramagnetic to antiferromagnetic tran-
sition (Roth 1964; Sack and Ghiorso 1991).

The standard entropy at 298.15 K was calculated from the
CP data (using a T3 extrapolation to 0 K) and resulted in S0

298.15 =
113.9 ! 0.2 J/(mol·K). Table 2 lists our results from the CP
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FIGURE 1. The heat capacity of polycristalline FeAl2O4 (hercynite)
measured between 4 and 400 K. A broad heat-capacity anomaly is
observed to occur between 4 and 43 K.
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measurements and Table 3 compiles some selected thermody-
namic properties for FeAl2O4. The latter were calculated from
the experimental results using interpolations of the data for
every degree. The interpolation procedure is such that interpo-
lated data always pass through the experimental data. Then S(T)
and H(T) were calculated by numerical integration. This pro-
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FIGURE 2. An enlarged view of the low-temperature part of the
experimental data. A broad anomaly is observed between 4 and 43 K,
which is probably due to a paramagnetic to antiferromagnetic transition
in FeAl2O4 (see text for details).
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D8G09 FGF7 8DG8U HDG9U 0HDG78 D70G0 H77GHU D02GU H9DG20 D2DGF
D8G28 FGFU 80GU8 H0G0F 0HEG77 D7HG9 H70G02 D0EGH H9HG8D D20G7
D8GU2 FGFH 82GE7 HHGD8 0H9G8D D7EG0 H72G7F D0EGU H9FGH8 D20G2
00G27 UG7F 8FG2F H2GDF 020G90 D7FGU H72GUD D0FG7 H99G99 D20G9
00G2F UG72 D77GDU HFG77 02FGU2 D79GD H7UGD9 D0FGU H8DGHF D2HG0
00GE2 UG79 D7HG98 H9G0H 0E7GFE D78GE H7UGU2 D0FGU H8HG9E D2HGE
0EGD2 UG2D D7UGF0 27G0F 0EHG77 DD7G0 H78GFE D0UGH H8FGH2 D2HG8
0EGE7 UG28 DDDGHU 20GH2 0E2GEU DD7GF HDDG27 D0UGU H89G92 D22GH
0EGE8 UG2U DDEGD2 22G2D 0EEG2F DD7GU HD0GD0 D0UG9 27DGHH D22GU
0UG90 UGF7 DD9G8D 2FGE0 0EUG80 DDDGU HD2GE8 D09GE 27HG90 D2EG7

FIGURE 3. A plot of CP/T against T. Note that the standard entropy
(SDEG298.15) is derived by integration of the CP/T function between 0
and 298.15 K. In this plot, the anomalous behavior between 4 and 43
K is clearly visible.

cedure was compared to a direct integration of a fitted CP-curve
and gives the same result within the expected uncertainties.

There is no evidence of a first-order transition in hercynite
(FeAl2O4) due to Jahn-Teller distortion of tetrahedral site Fe2+

with a reduction of symmetry of the crystal (Goodenough 1964).
Although a first-order transition has been observed for FeCr2O4
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(Shirane et al. 1964; Kose and Iida 1984), Goodenough (1964)
reasoned that FeAl2O4 should stay cubic down to zero Kelvin,
which seems to be confirmed by our data.

The total magnetic contribution to the entropy due to spin
ordering of tetrahedral Fe2+ may be computed as R ln 5 (Gopal
1966; Sack and Ghiorso 1991), which amounts to about 119.6
J/(mol·K) when added to the lattice entropy (King 1956; this
study). However, our measured value for the standard entropy
of 113.9 ! 0.2 J/(mol·K) is considerably lower, indicating that
the structure seems to fail to develop the full long-range mag-
netic order. Further work is clearly needed to further investi-
gate the magnetic structure of hercynite at low temperatures,
which may shed some light on the aforementioned descrepancy.
There is considerable disagreement among internally consis-
tent estimates for the standard entropy of FeAl2O4 (cf., Table
1), and our data are close to the lower end of these estimates.

Although we have further constrained the standard entropy
of FeAl2O4 using low-temperature calorimetry, thermodynam-
ics of FeAl2O4 are not yet fully understood, as there are neither
high-temperature heat-capacity data nor high-temperature heat-
content data published in the literature. Therefore, only esti-
mated high-temperature heat-capacity functions are available
(e.g., Robie and Hemingway 1995; Sack and Ghiorso 1991),
which bear considerable uncertainties. The determination of
the high-temperature heat capacity of FeAl2O4 remains an im-
portant task for experimentalists.
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