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An improved equation for crystal size distribution in second-phase influenced aggregates
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ABSTRACT

A model is presented to calculate crystal size distributions (CSDs) for coarsened mineral aggregates.
The equations consider the second-phase particles inside coarsening aggregates. This approach is dif-
ferent from other published kinetic growth equations. The proposed model includes grain size limits
due to the presence of second-phase particles. These limits control the behavior of growing grains.
The physical basis for this model is taken from a neighborhood-coarsening model. The model is able
to compute coarsening of a given set of crystal sizes, to simulate the evolution of the CSD, and to
describe the influence of the amount and size of the second-phase particles. The model is limited to
rocks that can be described as matrix with second phases. For very low second-phase concentrations
(volume fraction <0.01), the model gives results similar to Lifshitz-Slyozov-Wagner models (LSW).
In the case where the second-phase content is extremely high (volume fraction >0.5), the model
would not allow coarsening or the system can be no longer described as matrix and second-phase
particles. Depending on the size and amount of second phases, the CSD develops similar to LSW at
high growth rates, but intermediate growth rates produce CSDs that are unknown in other closed-
system coarsening models.

To test the model, natural data from a contact-metamorphic calcite marble with different mica
contents have been compared with simulated CSDs. The measured and simulated CSDs can be well
described by the proposed model for variable amounts of second-phase particles. The two-phase model
is applicable to impure carbonates, mica-bearing quartzites, or impure dunites. The proposed model

has interesting applications to experimental data, where porosity may influence grain coarsening.

INTRODUCTION

Grain growth and recrystallization are key phenomena in
understanding textures of rocks (e.g., Kretz 1994; Evans et al.
2001). The final grain size is a controlling parameter on deforma-
tion mechanisms, diffusion kinetics, and transport properties of
rocks. In order to understand the physics of grain growth, experi-
ments have been performed mainly on single-phase aggregates
(e.g., Chai 1974; Nichols and Mackwell 1991; Masuda et al.
1997). However, several problems still hinder the extrapolation
of these experimental data to natural, multiphase rocks (e.g.,
Covey-Crump 1997; Herwegh and Berger 2003). In particular,
the use of experimental growth constants in natural examples
requires information on the mechanisms of grain coarsening.
Some of this necessary information is reflected by the crystal size
distribution (CSD), and CSD analysis has proven fruitful in in-
vestigating textures and textural evolution in different rock types
(e.g., Marsh 1998; Denison et al. 1997; Eberl et al. 2002; Higgins
2002). Theoretical models that allow an interpretation of a CSD
have been developed mainly for nucleating and growing systems
(e.g., Marsh 1988). However, it is well known that Ostwald rip-
ening or other coarsening processes strongly influence the CSD
(Higgins 1998; Cabane et al. 2001). In order to use CSD data in
coarsened systems, grain growth is commonly modeled using
the LSW theory (Lifshitz and Slyozov 1961; Wagner 1961). This
theory offers equations for matrix-volume diffusion-controlled
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coarsening, for matrix-grain-boundary-controlled diffusion and
for dissolution/precipitation kinetics (Joesten 1991). In general,
the LSW theory can be written as:
dr (Ly 1 _1
& w) g

dr VRN R+

where R* is the critical radius, R is the grain radius, t is the time,
and K is an empirical constant. Equation 1 has an analytical
solution for pure grain growth and allows a stable CSD to be
predicted for a certain amount of coarsening (Fig. 1).

A more general theory, called communication neighbor theory
(CN) was presented by DeHoff (1991), which gives a solution for
more complex microstructures and can be applied to polyphase
aggregates. The CN theory considers the average distance be-
tween the coarsening grains such that Equation 1 changes to:

dR 1 1 1
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where <1/A> is the harmonic mean of the intercrystal distance.
Growth does not depend on the length scale of the particle itself,
but on the distance to the neighboring particle.

LSW and CN theory predict a CSD with a shift of the mode
toward larger grain size and development of skewness toward
the right-hand side (Fig. 1). Eberl et al. (1998) used the law
of proportionate effects (LPE) to expand the crystal growth
theory to encompass kinetic aspects. A simulation program
(GALOPER) is available, in which closed-system coarsening
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FIGURE 1. Analytic solutions for different kinetic coarsening theories.
Crystal size distribution functions are related to normalized grain size
(R/R yean) using LSW and CN theory (Lifshitz and Slyozov 1961; Wagner
1961; Joesten 1991; DeHoff 1991): (1) matrix volume diffusion; (2)
matrix grain boundary diffusion; (3) particle/matrix interface reaction
kinetics; and (4) CN theory. Graphs 1-3 were calculated on the basis of
Equations 28-31 in Joesten (1991). Graph 4 is from deHoff (1991).

can be combined with nucleation and growth laws of different
types (Eberl et al. 2000).

The final CSD is influenced by different physical processes
(e.g., Marsh 1998; Higgins 1998, 2002; Eberl et al. 1998). How-
ever, in a completely crystalline starting material, we can assume
grain coarsening as a closed-system process, where individual
grains grow at the expense of smaller grains by moving grain
boundaries (e.g., Chai 1974; Brook 1976; Kretz 1994; Evans et
al.2001). Such coarsening is fundamental in metamorphic rocks
(Kretz 1994) and is also considered important in magmatic sys-
tems (e.g., Higgins 2002). The well-established kinetic theories
assume diffusional processes or local dissolution and reprecipita-
tion between neighboring grains, but ignore the influence of the
non-growing solid material in the aggregates. In the following,
I will also consider this material, which is usually referred as
“second-phase particles” (Nes et al. 1985; Evans et al. 2001).

I propose a model in which the effect of second-phase
particles is included into a general coarsening equation. This
model is of special importance in geological materials, which
are rarely pure single-phase aggregates. Certain kinds of meta-
morphic rocks (e.g., quartzites, carbonates, dunites) and porosity
during low-grade metamorphism or in experiments, can be well
described as matrix mixed with second-phase particles. The in-
formation extracted from potential CSDs in these systems will
contribute to a better understanding of the texture of rocks and
may provide a tool to unravel kinetic processes in rocks that
contain a coarsening phase and different amounts of second-
phase particles.

MODEL

In general, crystalline material will increase in grain size by
minimizing surface energy. The kinetics behind this process are
dependent on the temperature, time, grain-boundary mobility,
and the driving force (given by the volume/surface energy rela-
tion; Kretz 1994). The grain boundary mobility depends on the
material properties, and also on second-phase particles that are
dragged or pinned during grain coarsening (Nes et al. 1985).
Therefore, second-phase particles influence the developing mean

crystal size (Zener cited in Smith 1948). The size (d,) and volume
fraction (f,: dimensionless value between zero and one) of the
second-phase particles influence the maximum grain size of the
matrix grains, as follows:

R=C 4,
=t 3
Iz 3
where C'is an empirical constant, and m is an exponent that ranges
between 0.33 and 1 (Zener cited in Smith 1948). This Zener
relation describes a maximum grain size in a system consisting
of a matrix phase and second-phase particles, but it does not
provide any CSD due to grain growth. Moreover, according to
Zener, the pinning force (F) is given by:
3.4,
F=Zy=t
2 v d @)
P
where yis the grain boundary energy, d, is the grain size, and f, is
the volume fraction of second-phase particles. This relationship
implies that grain growth stops at a limiting diameter:
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These basic relations have been used to develop a grain-
growth model for individual neighboring grains (Maazi and
Rouag 2002), which can be summarized by:

(520 -4
' i 13
where R; and R; are neighboring grains, M is the mobility of the
grain boundary between i and j, and 4 defines the neighborhood
relations:

A= )
T

The role of the Zener pinning effect has a negative (—) sign
when R, > R; and has a positive (+) sign when R,<R,. For a detailed
discussion of this model, see Maazi and Rouag (2002).

In contrast to the above-mentioned approach, LSW theory
does not calculate the processes between individual grains, but
uses average critical radii (R* in Eq. 1). In order to develop a
geometric model, I will also use average critical radii and re-
place M and 4 by an empirical constant as a simplification of the
Maazi and Rouag (2002) equations. The main step is to define
the minimum (R,;;) and maximum (R,,) critical radii, which
are influenced by the d,/f, relation (see Eq. 5). The minimum
critical radius is given by:

1
Fon = 3£\ ®)

\&* " 24,
In addition, the maximum critical diameter is given by:

R o-— L
(1 +%\ )

\&*" 24,

All initial grains larger than R, will grow and all grains
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smaller than R;, will shrink. The grains between the minimum
and maximum critical parameters do not change their size,
because their grain boundaries are fixed by the second phases.
Therefore, each grain has three possibilities to change its size,
which are defined by the relation between R*, R, and R,,,.
Equation 6 provides a growth relation and kinetics for two
grains, which is given by their grain-boundary mobility (Kretz
1994). The grain-boundary mobility at a given temperature is
unknown, but can be replaced by an empirical constant K (Eq.
1; see Evans et al. 2001). Using this approach and Equations 6,
8, and 9, we get:

‘min

—l ;s R>R
R

— = ; R..<R<R, (10)
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In this equation, the constant K has a similar physical meaning

to K in the LSW equation.

SIMULATIONS OF CSD

Similar to the LSW and CN models, Equations 8—10 can be
used to compute CSDs resulting from Zener-influenced coarsen-
ing. This iterative type of modeling is limited by the number of
grains left in the system after coarsening.

The CSDs can be modeled following the simulation procedure
presented in Figure 2. In each cycle, the critical radii (Rin, max)
must be defined. This is important for simultaneous modeling
of matrix grain-growth and second phases (e.g., Solomatov et
al. 1999). Calculations have been done using the CN equation,
the LSW equation, the Zener-influenced Equations 8-10, and the
GALOPER program (Eberl et al. 1998, 2000). In CN theory, the
harmonic mean of the intercrystal distance is required. This value
depends on the population density of the growing phase (see Eq.
2). Following the arguments of Higgins (1998), I combine K and
<1/A> into a new constant K", which is different from the K in
the LSW-equation. By using K" in the CN equation, it is possible
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FIGURE 2. Flow diagram showing the simulation procedure. The
diagram shows the iteration used for each grain size calculation. The
input parameters are shown in the upper right corner.

to compare the different kinetic theories (Table 1).

CSD as well as average grain sizes of different models can
best be compared at similar amounts of coarsening. Therefore,
the amount of coarsening has been defined by:

(Ru = Ro)*100
Rslan

where R,,.., 1s the average final grain-size and R, is the average
grain-size of the starting material. The results of the simulations
are presented in Figures 3 and 4, and Tables 1 and 2. I simulated
different cycles with constant d,/f, values and compare these
with other kinetic theories. For completeness, the starting CSD
are shown (Fig. 3a). The Zener-influenced model produces as-
ymptotic CSDs, in contrast to the expected Gaussian CSD for
LSW calculations (see Fig. 1). The simulated asymptotic CSDs
in closed-system coarsening cannot be generated by LSW equa-
tions (see also run 4 in Fig. 3). In contrast, CN theory is able
to compute trends toward asymptotic CSD, which represent an
intermediate shape between the LSW- and the Zener-influenced
models (Fig. 3a). The change of the CSD is also documented by
plots showing o (natural logarithms of the sizes) vs. 32 (variance
of the natural logarithms) of the computed data (Fig. 3c).

The examples in Figure 3 have one d,/f, value (Table 1). In
addition, Figure 4 shows the influence of increasing d,/f, on the
modeled CSDs. It is obvious that high values of d,/f, (e.g., low
amounts of second-phase particles; Table 1) produce CSDs simi-
lar to LSW theory. Because pinning is rare, this result is expected
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FIGURE 3. Modeled CSD using different kinetic theories, (a) CSD
modeled with different equations at similar amount of coarsening
(coarsening ~30%): 1 = starting material; Run 2 = the proposed model;
Run 4 =LSW model (Eq. 1); Run 6 = CN model (Eq. 2); Run11 = Ostwald
ripening using program-package GALOPER (Eberl et al. 2000). (b) An
illustration of the effect of high coarsening intensities. Run 3 show the
Zener-influenced model at 92% coarsening. (¢) Calculated statistical
parameters for Zener-influenced CSDs plotted in o—? diagram (Eberl
et al. 1998). Same input data as in a and b. Further information on the
runs is given in Table 1.
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TABLE 1. Data of modeling using LSW-, CN- and Zener-influenced-coarsening (ZIC) equations

Run no. Model Cycles K (K") f, d, dy/f, R* t Growth Rinean Grains
no. um um um % um no.
2 ZIC 1 10 0.1 0.5 5 2 2 39 3.02 618
3 ZIC 2 10 0.1 0.5 5 2 2 92 4.20 569
4 LSW 2 7 2 2 76 3.83 477
5 LSwW 2 5 2 2 65 3.6 487
6 CN 1 K"3 2 2 37 298 625
7 CN 2 K"3 2 2 112 4.64 488
8 ZIC 2 10 0.33 0.5 15 2 2 13 2.46 691
9 ZIC 2 10 0.01 1 100 2 2 404 10.99 440
10 ZIC 2 10 0.001 2 2000 2 2 432 11.61 430

Notes: Grain size and d,/f, ratios are given in micrometers.

TABLE 2. Results from simulations using variable K-values and com-
parison with LSW-modeling
Drmean Growth Dinean
ZIC LSW
um um % um % %
5 10 3.02 3852 3.27 50.16 -12
5 10 4.20 92.39 4.80 120.02 -28
5 25 3.89 78.51 4.69 114.86 -36
5
5
5

d,/f, K Growth  Diff in growth

25 7.37 237.78 7.86 260.38 -23
100 7.86 260.35 11.50 427.25 -167
100 27.21 1147.74 19.30 785.20 363

Notes: For abbrevations see Table1.
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FIGURE 4. Computed CSDs of the Zener-influenced model at variable
d,/f, ratios. At high d/f, ratios, the CSD shift toward similar shape as
LSW or CN modeling (compare also Fig. 3). In contrast, at low d,/f,
ratios, assymptotic CSD developed which are different from LSW theory.
Further information is given in Table 1 (run &, 9, and 10).

if only a few second-phase particles are present, and the system
behaves similar to a pure single-phase systems.

The exact type of CSD depends on the coupled relationship
between R* and R, max (Fig. 5). This relationship changes with
variable d,/f,. Therefore, the amount and the size of the second-
phase particle influences the observed CSD. If d,//, is high,
the calculated R,,m. 18 nearly identical for variable R*, and
Equation 10 reduces to the LSW grain-coarsening equation. If
d,/f, is moderate, R, increases exponentially whereas R* and
R,..x increase only slightly (Fig. 5). This exponential increase of
the difference between R, and R, produces a stagnation of
coarsening. This means that with increasing matrix grain sizes,
the available second phases become more and more effective in
pinning the moving grain boundaries. An alternative to continued
coarsening of the matrix grains at constant f, is to change d, as the
grain size of the matrix increases. In this case, the discrepancy
between R,,;,, and R, decreases.

CSD and grain sizes during contemporaneous growth of
matrix and second phases can be calculated from the present
model by iterative change of d, (Fig. 2). This calculation is not
possible using other kinetic models. The relationship between
R* and R, max indicates the limit of the model. In models with
extremely high contents of second-phase particles (f, >0.5), the
relation between R* and R, becomes inconsistent. The defini-
tion of matrix grains and second phases becomes ambiguous
and grain growth cannot be described by a Zener-influenced
coarsening model.

Natural examples

The Adamello pluton produces an approximately 2 km
wide contact metamorphic aureole in sedimentary rocks (Brack
1984). One sedimentary unit is the “Calcare di Dosso dei Morti,”
which represents former stromatoporoid reefs. The contact au-
reole produced a continuous transition from fine-grained non-
metamorphic carbonates to coarse-grained calcite marbles. The
grain coarsening during that metamorphism was investigated
in the nominally pure marbles (Herwegh and Berger 2003).
The non-metamorphic material has an average grain size of
5 wm, whereas the highest-grade rocks consist of centimeter-
sized crystals. However, second-phase particles, such as mica,
influence the kinetics of coarsening. As a case study, I present
results for one sample from the contact aureole, which reached
maximum temperatures of ~415 °C. The calcite grain size varies
and the sample contains layers with variable amounts of mica
(Table 3). The grains were analyzed on images of thin sections.
Based on the resulting grain-boundary outlines, the areas of the
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FIGURE 5. Evolution of R, and R, with the critical radius R * and
variable d,/f, values. In this representation, the effect of different d,/f,
ratios on the grain size evolution become obvious.

TABLE 3.  Grain size data for Zener influenced marble in the contact
aureole from the Adamello pluton
Sample 20-1 Sample 20-2
Size No. Size No.
class crystal class crystal
75 5 50 29
150 51 100 179
225 57 150 86
300 26 200 37
375 18 250 5
450 9 300 3
525 2
600 2
Dinean sum Dinean sum
209 170 88 409
f, 0.011 f, 0.068
d, 25 d, 28

Notes: Grain size are given in micrometers.

grains were estimated with Image SXM (Version 1.61). The data
were checked for 3D-conversion using the computer program
“CSDCorrections” (Higgins 2000). The shapes of the CSD in 2D
and 3D are similar, which is caused by the isometric shapes and
random distributions of the investigated calcite grains. There-
fore, a 2D presentation is chosen in order to be comparable with
other studies. The calcite grains in the mica-poor sample show
a skewed Gaussian distribution, which can be modeled using
the LSW equation (Fig. 6a). However, in the mica-bearing lay-
ers, the CSD shows a log-normal distribution with a trend to a
straight-line pattern (Fig. 6b). This data fit a Zener-influenced
CSD (see run 2 in Fig. 3a). The CSD suggests that it developed
by closed-system coarsening. The fact that two different CSDs
developed during the same temperature-time history in the same
rock indicates dependence on d,/f, (Fig. 6). Slight changes of
the shape of the CSDs are sometimes hard to recognize, but
completely different patterns (log-normal vs. asymptotic CSD)
clearly can be detected. In addition, statistical parameters (e.g.,
variance of the distribution; see Fig. 3¢) can be used to identify
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FIGURE 6. CSDs in impure contact-metamorphic marbles. Data
are given in Table 3. Note the difference in the CSD pattern for two
portions of the same sample at varying mica content. The high mica
content produces a log-normal CSD as modeled by the presented model
(compare Fig. 3).

the evolution of the distributions. The direct comparison of mod-
eled and measured CSDs enables the use of different models
(e.g., Higgins 1998).

The absolute grain size also changes with d,/f, in Zener-
influenced systems (see Equation 3). Independent of absolute
values, the relations between d,/f, and grade of coarsening in
the model can be compared with natural data. Mas and Crowley
(1996) published a data set on calcite coarsening showing vari-
able d,/f,. These data show a power-law relationship between
d,/f, and matrix grain-size (R,..) in the impure rocks. Toward
pure carbonates, a break in slope occurs, indicating that grain sizes
are not (or only weakly) influenced by second-phase particles. The
Zener-influenced coarsening model calculates a change in matrix
grain-size with increasing d,/f, ratio in the same manner as observed
in the natural example by Mas and Crowley (1996; Fig. 7).

The use of zener-influenced coarsening in geological
systems

Grain coarsening accompanies increasing intensity of meta-
morphism. Assuming a stable paragenesis, coarsening will be
strongly influenced by the number and distribution of the phases
present. Extrapolating experimental data obtained on single-
phase systems to regional metamorphic time-temperature scales,
much larger grain sizes would be expected. In nature, the grain
sizes are strongly influenced by second-phase particles. However,
the values of C and m in Equation 3 are not well known. Under
these circumstances, the CSD helps to interpret grain-growth
processes. Iterative modeling of the CSD gives insights into
the extent to which the second-phase particles influence grain
growth. This insight is particularly useful where different d /1,
values are measured in one locality.

Most metamorphic textures do not suggest pure grain growth,
but also include the changes induced in second phases (e.g.,
abundance and size) by metamorphic reactions. However, in
rocks containing one dominant phase, which underwent mainly
grain growth, the model is able to include change in size and
fraction of the other phases. This situation reflects the case of
a variable R,;, and R, depending on d,/f, (see Fig. 5). These
changes can be modeled in terms of the CSD and average grain
size using the proposed equations.
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FIGURE 7. Diagram of d,/f, vs. matrix grain size. The open circles
represent data from Mas and Crowley (1996) and the dashed line is a
fit through this data. The solid line was calculated using the present
coarsening model. The model is reduced to the average grain size, but
the dependency of d,/f, on the matrix grain size can be simulated.

CONCLUDING REMARKS

The model presented here calculates grain-size limits based
on the relation of volume-fraction and size of second-phase
particles. The resulting CSDs differ from those of LSW-based
CSDs in the case of closed-system coarsening. This difference
is caused by the ability of the model to fix some grain sizes by
pinning due to the presence of second phases. The developed
grain sizes depend on d, as well as on f,.

This model has great potential for comparing calculated and
measured CSDs in metamorphic rocks. In samples with measur-
able CSD, d,, and f, (e.g., Mas and Crowley 1996), the CSD can
be modeled for grain-size evolution along a given temperature-
time path. In these examples, the measured average grain size as
well as the parameters of the CSD can be compared with calcu-
lated ones. If it is possible to quantify the effect of second-phase
particles, we can also adapt experimental data for single-phase
grain growth to a wider range of natural examples.
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