
American Mineralogist, Volume 92, pages 1919–1924, 2007

KURT HOLLOCHER,1,* PETER ROBINSON,2 M.P. TERRY,3 AND EMILY WALSH4

1Department of Geology, Union College, Schenectady, New York 12308, U.S.A.
2Geological Survey of Norway, N-7491, Trondheim, Norway

3Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, U.S.A.
4Department of Geology, Cornell College, Mount Vernon, Iowa 52314, U.S.A.

ABSTRACT

The geochemistry of kyanite and orthopyroxene eclogites (7 samples) indicate that they are gab-
broic cumulates. Incompatible trace elements in these rocks occur at low concentrations compared 
to regionally associated eclogites that are compositionally similar to basaltic magmas (11 samples). 
Eclogites with cumulate protoliths commonly contain <10 ppm Zr, <1.2 ppm Sm, and <0.2 ppm Lu, 
compared to generally >100 ppm Zr, >4 ppm Sm, and >0.4 ppm Lu for basaltic eclogites. Because 
of low Zr concentrations, igneous and metamorphic zircons are rare or absent in these eclogites. 
Samarium and Lu concentrations are also low in the kyanite and orthopyroxene eclogites, but they 
have parent/daughter Sm/Nd ratios of 0.23–0.51 and Lu/Hf ratios of 0.22–0.60, higher than most as-
sociated basaltic eclogites at 0.22–0.38 and 0.11–0.18, respectively. These results suggest that kyanite 
and orthopyroxene eclogites are poor targets for zircon geochronologic work, but are good targets for 
Sm/Nd and Lu/Hf mineral/whole rock geochronology because of their high parent/daughter ratios.

 Norway, kyanite eclogite, geochronology, zircon, gabbro, cumulate, orthopyroxene 
eclogite, samarium-neodymium, lutetium-hafnium
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INTRODUCTION

The Scandinavian Caledonides are a complex Silurian-Lower 
Devonian (Scandian) orogenic belt representing the multi-stage 
closing of part of the Iapetus Ocean (e.g., Roberts and Gee 1985). 
The Western Gneiss Region, Norway, is an enormous window 
eroded through Scandian thrust sheets, in which Proterozoic 
Baltican basement rocks and deep synclinal remnants of the 
thrust sheets are exposed (Fig. 1; Robinson 1995). Although 
extensive zircon geochronologic work has been carried out on 
eclogites in the Western Gneiss Region and related areas (e.g., 
Essex and Gromet 2000; Tucker et al. 2004; Krogh et al. 2004; 
Hacker and Gans 2005; Root et al. 2005), few high-precision 
ages (2  errors of 1 to 2 Ma) have been obtained.

Kyanite eclogites are particularly attractive targets for 
geochronologic work because their low variance metamorphic 
assemblages allow more-precise determination of metamorphic 
conditions (Terry et al. 2000; Ravna et al. 2004). Precise geo-
chronology, combined with good constraints on metamorphic 
conditions, can yield metamorphic pressure-temperature-time 
paths that are valuable for understanding Caledonide tectonics 
(e.g., Mørk et al. 1988; Gromet et al. 1996; Hacker and Gans 
2005; Walsh et al. 2007). Although some kyanite eclogites have 
yielded zircons and have been successfully dated (e.g., Root et 
al. 2004; McClelland et al. 2006), an outstanding problem is that 

kyanite eclogites generally yield few or no zircons, and those 
present are very small. Why should this be?

Major- and trace-element analyses of selected Norwegian 
eclogite whole rocks, from deeply folded synclinal remnants of 
Scandian thrust sheets in the coastal part of the Western Gneiss 

data give insight as to which isotopic systems in addition to 
U-Pb zircon are most appropriate for dating different types of 
eclogites, and how to recognize them. This issue is important for 

the history of high-pressure (HP) and ultrahigh-pressure (UHP) 
eclogite metamorphism and tectonic evolution of the Scandina-
vian Caledonide mountain chain.

KYANITE ECLOGITES AND ZIRCON: WESTERN GNEISS
REGION

Kyanite eclogites have proven to be useful for thermobarom-
etry, and phase relations have made it possible to estimate UHP 
metamorphic conditions of, for example, 820 °C and 34–39 kbar 
for the pristine core of a body discovered on Fjørtoft (Terry et 
al. 2000; Robinson et al. 2003; Ravna et al. 2004). The garnets 
in this body contain polycrystalline pseudomorphs after platy 
crystals of coesite. In addition, the omphacite in this rock con-
tains apparently exsolved needles of quartz and hornblende. 
This is evidence of a possible Ca-eskola vacancy substitution 
(Gasparik and Lindsley 1980) combined with OH– substitution 
(Terry et al. 2000, 2003; Terry and Robinson 2001) that could * E-mail: hollochk@union.edu
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FIGURE 1. Geologic map of the 
northern part of the Western Gneiss 
Region, Norway. Sample locations are 
shown as open circles. Modified after 
Figures 1 and 2 in Tucker et al. (2004).

TABLE 1.  Analytical data on eclogites in the Sætra and Blåhø Nappes
Cumulate compositions Basaltic compositions

Location Gossa Island Fjørtoft Flemsøy Midøy Averøy Tennøy Lauvøy
Sample 205 206 207 208 209 32 1294YK 190 223 224 60 61 63 64 65 66 67 69
Nappe Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Sætra Sætra Sætra Sætra Sætra Sætra Sætra Sætra
Eclogite type Orthopyroxene Kyanite Kyanite Kyanite Kyanite Kyanite Kyanite Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic

Partial major element analyses, wt%, and molar ratios × 100
SiO2 48.41 45.88 48.93 47.32 49.45 47.27 44.22 47.90 47.75 47.22 51.09 50.32 50.92 50.78 49.58 51.10 50.99 51.01
FeOtotal 11.72 6.36 5.13 5.89 4.90 5.22 7.56 13.84 10.07 8.87 16.05 12.73 12.34 12.63 11.86 12.45 12.01 12.41
MgO 20.92 13.48 10.15 11.84 10.72 11.67 8.37 6.49 8.79 10.21 4.66 6.58 6.71 6.51 7.45 6.56 6.88 6.36
CaO 7.38 12.56 15.33 14.91 16.93 14.91 14.20 8.29 11.76 12.39 8.93 10.65 10.60 10.86 11.36 10.69 10.74 10.38
Na2O 0.20 1.15 2.23 1.13 1.83 0.84 1.00 2.87 2.83 2.83 2.16 2.45 2.69 2.57 2.59 2.20 2.55 2.59
P2O5 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.46 0.19 0.08 0.32 0.19 0.15 0.18 0.16 0.16 0.17 0.22
Mg/(Mg + Fetotal) 76 79 78 78 80 80 66 46 61 67 34 48 49 48 53 48 51 48
Ca/(Ca + Na) 95 86 79 88 84 91 89 61 70 71 70 71 69 70 71 73 70 69

CIPW norms, vol%, major normative components only
Plagioclase 31.1 63.9 56.1 59.2 49.7 59.6 70.6 59.2 51.9 51.5 47.1 53.1 53.8 53.3 54.3 51.3 54.1 52.8
Clinopyroxene 8.6 9.7 28.1 21.6 36.8 19.2 8.0 7.4 23.1 21.7 15.2 19.7 20.8 21.2 22.4 19.7 19.9 19.7
Orthopyroxene 44.1 2.4 – 2.4 – 4.1 – 6.7 – – 22.7 17.8 17.3 18.0 8.4 21.4 19.6 20.3
Olivine 14.1 22.7 11.8 15.9 9.7 14.5 17.2 14.5 15.0 16.8 – 2.6 2.4 1.9 9.0 – 1.1 0.0
Total 97.9 98.7 96.0 99.1 96.2 97.4 95.8 87.8 90.0 90.0 85.0 93.2 94.3 94.3 94.0 92.3 94.7 92.9
Plagioclase An% 93 83 71 81 73 86 89 52 55 66 54 54 50 52 53 57 53 51

Trace elements, parts per million by weight
Zr 35 1.9 4.7 3.1 6.9 4.8 11.0 138 155 53 222 142 136 140 104 141 134 157
La 0.67 0.17 0.24 0.20 0.81 1.97 2.06 22.5 7.0 1.8 15.3 9.9 9.3 8.5 7.0 9.2 9.4 12.6
Nd 2.7 0.6 1.1 0.7 2.2 3.3 5.5 29 13 7 25 16 15 14 12 15 15 18
Sm 1.19 0.23 0.53 0.36 1.02 0.76 1.55 6.35 4.08 2.59 7.35 4.80 4.52 4.37 3.72 4.58 4.49 5.22
Lu 0.22 0.05 0.09 0.08 0.14 0.06 0.17 0.51 0.41 0.33 0.82 0.59 0.53 0.54 0.44 0.54 0.57 0.62
Hf 0.98 0.08 0.22 0.13 0.31 0.18 0.53 3.53 3.80 1.80 5.97 3.81 3.64 3.80 2.79 3.81 3.56 4.20
Th 0.071 0.003 0.007 0.006 0.099 0.245 0.15 1.96 0.79 0.09 1.75 0.84 0.98 1.02 0.58 1.03 1.05 1.28
Sm/Nd 0.44 0.42 0.48 0.51 0.47 0.23 0.28 0.22 0.31 0.38 0.29 0.30 0.30 0.31 0.30 0.30 0.31 0.29
Lu/Hf 0.22 0.59 0.41 0.60 0.44 0.31 0.32 0.14 0.11 0.18 0.14 0.16 0.14 0.14 0.16 0.14 0.16 0.15
Trapped liquid % 32% 1% 4% 3% 30% 18% 26% – – – – – – – – – – –

TABLE 1.—EXTENDED
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also be an indicator of UHP conditions (Liou et al. 1998; but 
see Page et al. 2005).

Based on the mineralogy of this rock, Terry et al. (2000) 
stated: “A striking feature of this sample compared with any 
other eclogites [then known in the region] is the high pyrope and 
grossular contents of garnet, low jadeite content and high [Mg/
(Mg+Fet)] ratio of the omphacite, and the abundances of quartz, 
zoisite and kyanite. A most likely protolith for this eclogite was 
a magmatically primitive igneous cumulate rock dominated by 
Ca-plagioclase and Mg-rich pyroxene” (p. 1644). About the 
same time, Terry and Robinson located other kyanite eclogites on 
Flemsøya and Gossa, as well as a coarse orthopyroxene eclogite 
associated with the kyanite eclogites on Gossa.

In 1997, Tom Krogh initiated a program of U-Pb zircon-bad-
deleyite geochronology on eclogites and gabbros studied in detail 
by Terry and Robinson. Despite the hard work obtaining adequate 
amounts of zircon from some eclogites, results are reported in 
Krogh et al. (2004). Successfully dated rocks include the Averøy 
eclogite in the Blåhø Nappe (eclogite facies metamorphism at 415 
± 2 Ma, amphibolite facies overprint at ~410 Ma; Krogh et al. 
2004; data shown in detail in Robinson et al. 2003). Our samples 
223 and 224 come from different locations in this same body 
(Table 1). Unfortunately, the UHP eclogite on Fjørtoft yielded 
no zircon. More recently, Brad Hacker and Andrew Kylander-
Clark began a program to date eclogite metamorphism in Norway 
using Sm/Nd and Lu/Hf, and Robinson suggested the Fjørtoft 
eclogite as a likely candidate. All this geochronological effort on 
eclogites is necessary because precise geochronology is key to 
understanding Scandian tectonic processes in the region.

SAMPLES AND ANALYSES
Most of the samples reported here were collected in 2004 as part of an exten-

sive sampling program for metamorphosed igneous rocks in various nappes in the 
area between Trondheim and Ålesund (Fig. 1). The dominant collection targets 
were amphibolites and gabbros, but a variety of eclogites, including kyanite- and 
orthopyroxene-bearing varieties, from the Blåhø and Sætra Nappes were also 
collected. We use the term orthopyroxene eclogite rather than garnet websterite 
(e.g., Carswell et al. 1985, 1990) because garnet + omphacite is ~70% in this rock, 

Major-
element analyses of all samples were performed by ICP-OES at Acme Laboratory 
(Vancouver, Canada). Trace-element analyses were performed by Hollocher by HF 
pressure vessel dissolution and ICP-MS at Union College. Partial data are shown 
in Table 1; detailed results will be reported elsewhere.

RESULTS

The analyzed rocks were divided into probable cumulate 
or basaltic varieties based on bimodal distributions of several 
compositional characteristics (see Abstract). The distinction 
between these two varieties is indicated by differences in FeO 
(averages: 6.7 cumulate vs. 12.3 wt% basaltic), MgO (12.5 vs. 
7.0 wt%), Mg/(Mg + Fetotal) molar ratio (77 vs. 50%), normative 
plagioclase composition (An82 vs. An54), normative plagioclase 
+ clinopyroxene + orthopyroxene + olivine (representing likely 
cumulus phases; 97.3 vs. 91.7%), and incompatible element 
concentrations (e.g., Zr, 10 vs. 138 ppm). Using CIPW volume 
norms as a proxy for low pressure igneous modes (Table 1), 
the orthopyroxene eclogite (sample 205) apparently had an 
olivine norite protolith, and the kyanite eclogites had olivine 
gabbro protoliths. The eclogites with basaltic compositions 

rocks in Scandian nappes, as indicated by 56 Blåhø Nappe and 
67 Sætra Nappe amphibolites of basaltic composition collected 
from the same part of the Western Gneiss Region (to be reported 
elsewhere).

Figure 2 shows REE patterns for the 18 eclogites reported 
here. Both cumulate and basaltic types have a range of REE pat-
tern shapes, from LREE-enriched to LREE-depleted. In all cases, 

lower MREE and HREE concentrations than any of the basaltic 
eclogites. The Gossa kyanite eclogites are all LREE-depleted 
with pattern maxima (excluding Eu) in the MREE’s. This pattern 
shape suggests that REE concentrations in these rocks are domi-
nated by cumulus augite. In basalt magmas, augite has a REE 

and Blundy 1997; Norman et al. 2005). The Fjørtoft kyanite 
eclogite is LREE-enriched, but all normalized REE values are 
<10 like the Gossa kyanite eclogites. Simple fractional crystal-

1993) indicates that model gabbroic cumulates have REE pat-
terns sub-parallel to their parental liquids (exclusive of Eu). The 
LREE-enriched (Fjørtoft, sample 32) and LREE-depleted (Gossa 
kyanite eclogites) REE patterns of cumulate eclogites in Figure 
2 were therefore derived, respectively, from LREE-enriched 
and -depleted parent magmas. Five of the six kyanite eclogites 
have positive Eu anomalies, not found in the basaltic eclogites,
indicative of considerable cumulus plagioclase.

The Gossa orthopyroxene eclogite is LREE-depleted but has 

TABLE 1.  Analytical data on eclogites in the Sætra and Blåhø Nappes
Cumulate compositions Basaltic compositions

Location Gossa Island Fjørtoft Flemsøy Midøy Averøy Tennøy Lauvøy
Sample 205 206 207 208 209 32 1294YK 190 223 224 60 61 63 64 65 66 67 69
Nappe Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Blåhø Sætra Sætra Sætra Sætra Sætra Sætra Sætra Sætra
Eclogite type Orthopyroxene Kyanite Kyanite Kyanite Kyanite Kyanite Kyanite Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic Basaltic

Partial major element analyses, wt%, and molar ratios × 100
SiO2 48.41 45.88 48.93 47.32 49.45 47.27 44.22 47.90 47.75 47.22 51.09 50.32 50.92 50.78 49.58 51.10 50.99 51.01
FeOtotal 11.72 6.36 5.13 5.89 4.90 5.22 7.56 13.84 10.07 8.87 16.05 12.73 12.34 12.63 11.86 12.45 12.01 12.41
MgO 20.92 13.48 10.15 11.84 10.72 11.67 8.37 6.49 8.79 10.21 4.66 6.58 6.71 6.51 7.45 6.56 6.88 6.36
CaO 7.38 12.56 15.33 14.91 16.93 14.91 14.20 8.29 11.76 12.39 8.93 10.65 10.60 10.86 11.36 10.69 10.74 10.38
Na2O 0.20 1.15 2.23 1.13 1.83 0.84 1.00 2.87 2.83 2.83 2.16 2.45 2.69 2.57 2.59 2.20 2.55 2.59
P2O5 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.46 0.19 0.08 0.32 0.19 0.15 0.18 0.16 0.16 0.17 0.22
Mg/(Mg + Fetotal) 76 79 78 78 80 80 66 46 61 67 34 48 49 48 53 48 51 48
Ca/(Ca + Na) 95 86 79 88 84 91 89 61 70 71 70 71 69 70 71 73 70 69

CIPW norms, vol%, major normative components only
Plagioclase 31.1 63.9 56.1 59.2 49.7 59.6 70.6 59.2 51.9 51.5 47.1 53.1 53.8 53.3 54.3 51.3 54.1 52.8
Clinopyroxene 8.6 9.7 28.1 21.6 36.8 19.2 8.0 7.4 23.1 21.7 15.2 19.7 20.8 21.2 22.4 19.7 19.9 19.7
Orthopyroxene 44.1 2.4 – 2.4 – 4.1 – 6.7 – – 22.7 17.8 17.3 18.0 8.4 21.4 19.6 20.3
Olivine 14.1 22.7 11.8 15.9 9.7 14.5 17.2 14.5 15.0 16.8 – 2.6 2.4 1.9 9.0 – 1.1 0.0
Total 97.9 98.7 96.0 99.1 96.2 97.4 95.8 87.8 90.0 90.0 85.0 93.2 94.3 94.3 94.0 92.3 94.7 92.9
Plagioclase An% 93 83 71 81 73 86 89 52 55 66 54 54 50 52 53 57 53 51

Trace elements, parts per million by weight
Zr 35 1.9 4.7 3.1 6.9 4.8 11.0 138 155 53 222 142 136 140 104 141 134 157
La 0.67 0.17 0.24 0.20 0.81 1.97 2.06 22.5 7.0 1.8 15.3 9.9 9.3 8.5 7.0 9.2 9.4 12.6
Nd 2.7 0.6 1.1 0.7 2.2 3.3 5.5 29 13 7 25 16 15 14 12 15 15 18
Sm 1.19 0.23 0.53 0.36 1.02 0.76 1.55 6.35 4.08 2.59 7.35 4.80 4.52 4.37 3.72 4.58 4.49 5.22
Lu 0.22 0.05 0.09 0.08 0.14 0.06 0.17 0.51 0.41 0.33 0.82 0.59 0.53 0.54 0.44 0.54 0.57 0.62
Hf 0.98 0.08 0.22 0.13 0.31 0.18 0.53 3.53 3.80 1.80 5.97 3.81 3.64 3.80 2.79 3.81 3.56 4.20
Th 0.071 0.003 0.007 0.006 0.099 0.245 0.15 1.96 0.79 0.09 1.75 0.84 0.98 1.02 0.58 1.03 1.05 1.28
Sm/Nd 0.44 0.42 0.48 0.51 0.47 0.23 0.28 0.22 0.31 0.38 0.29 0.30 0.30 0.31 0.30 0.30 0.31 0.29
Lu/Hf 0.22 0.59 0.41 0.60 0.44 0.31 0.32 0.14 0.11 0.18 0.14 0.16 0.14 0.14 0.16 0.14 0.16 0.15
Trapped liquid % 32% 1% 4% 3% 30% 18% 26% – – – – – – – – – – –

TABLE 1.—EXTENDED
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FIGURE 2. Chondrite-normalized REE patterns eclogites, including 
kyanite (6) and orthopyroxene (1) eclogites having igneous cumulate 
protoliths, and more common eclogites of basaltic composition (11). 
Reference lines for oceanic basalt are from Sun and McDonough (1989). 
Chondrite-normalizing factors are from McDonough and Sun (1995).

higher REE concentrations than most of the kyanite eclogites 
(Fig. 2). It is MgO-rich (20.9%) but relatively poor in CaO and 
Na2O. This suggests the possibility that its high MgO content 
was derived from Ca-Mg exchange during high-temperature 
hydrothermal alteration with sea water (e.g., Humphris and 
Thompson 1978; Mottl and Holland 1978). Figure 3a shows, 
however, that this and the other cumulate eclogites are compo-
sitionally similar to common gabbroic rocks and does not plot 
at low Ca/(Al-Na-K) ratios as would be expected from hydro-
thermal sea water alteration.

If our interpretation for the cumulate origin of the kyanite 
and orthopyroxene eclogites is correct, then it is of interest to 
estimate the original proportion of trapped interstitial liquid. A 
highly incompatible (e.g., Pearce and Parkinson 1993), relatively 
immobile (e.g., Becker et al. 2000) element such as Th should 
occur almost entirely in the trapped liquid component of a cu-

in Blåhø and Sætra Nappe amphibolites of basalt composition 
(134 samples, including eclogites, to be reported elsewhere) can 
be estimated by the empirical relationship:

Th
La
Smamphibolite

n

n amphib

0 15.
oolite

2

n

n amphibolite

La
Sm

0 58. .
(1)

Because model REE patterns for gabbroic cumulates (not 
shown) are sub-parallel to their parent magmas, we can use the 
Lan/Smn ratios in the cumulate eclogites to estimate Th concen-
trations in liquids parental to them. The percentage of trapped 
liquid in the cumulates can therefore be approximated:

Percent trapped Liquid
Th

La
S

eclogite

n

100

0 15

*

.
mm

La
Smn eclogite

2

n

n

0 58.
eclogite

.

(2)

This results in model trapped liquid ranging from 1% in 
sample 206 to 32% in sample 205, a range from adcumulates to 
orthocumulates (Table 1; e.g., Philpotts 1990, p. 247).

PERTINENCE TO GEOCHRONOLOGIC WORK

The low content of Zr (Fig. 3b) and other incompatible ele-
ments in the kyanite eclogites is consistent with cumulate origin. 

even under metamorphic conditions. This explains the lack of 
zircon in the Fjørtoft kyanite eclogite, discussed above (4.8 ppm 

-

2b) tend to have lower Zr concentrations than volcanic rocks, 
suggesting that some of the plutonic rocks are cumulates. Our 
kyanite eclogites overlap these plutonic rocks and extend to even 
lower Zr concentrations. The basaltic eclogites have roughly an 
order of magnitude more Zr and so are more likely to contain 
metamorphic zircon.

Figure 3c shows Sm concentrations and Sm/Nd ratios that are 
of interest for Sm/Nd geochronologic work (e.g., garnet-whole 
rock). Among the reference data set, plutonic rocks generally 
plot at low Sm concentrations and high Sm/Nd ratios compared 
to volcanic rocks, again probably representing a considerable 
proportion of cumulate rocks. Gossa kyanite eclogites and the 
orthopyroxene eclogite have lower Sm concentrations (0.23–1.02 
ppm) than do the basaltic eclogites (3.7–7.4 ppm), but the Gossa 
eclogites have higher Sm/Nd ratios (0.42–0.51) than do the ba-
saltic eclogites (0.22–0.38). Like Figure 3b, the kyanite eclogites 
plot in a region dominated by the plutonic rock reference set. 
The Flemsøy, and particularly the Fjørtoft, eclogites have both 
low Sm concentrations and low Sm/Nd ratios, and so represent 

other kyanite eclogites. High-precision geochronologic work is 
easiest if rocks have both high REE abundances and high Sm/Nd 
(parent/daughter) ratios.

Figure 3d shows Lu concentrations and Lu/Hf ratios of our 
samples, of interest for Lu/Hf geochronology. The plutonic 
rock reference set tends to plot at low Lu concentrations and 
high Lu/Hf ratios, relative to the volcanics, and to overlap 
the Gossa kyanite and orthopyroxene eclogites. The analyzed 
basaltic eclogites have Lu concentrations of 0.33–0.82 ppm, 
compared to 0.05–0.14 for the kyanite eclogites, and Lu/Hf 
ratios of 0.11–0.18 and 0.31–0.60, respectively. The Lu/Hf sys-
tem therefore resembles the Sm/Nd system in that the kyanite 
eclogites have comparatively low Lu concentrations but high 
parent/daughter ratios.

Region appear to be plagioclase-rich gabbroic cumulates, with 
low concentrations of REE, Zr, and other incompatible ele-
ments compared to eclogites of basaltic composition. Our one 
orthopyroxene eclogite, interpreted to be a noritic cumulate, 
has intermediate trace element concentrations probably in part 
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as a result of a considerable original trapped liquid component. 
Kyanite and orthopyroxene eclogites are apparently derived from 

They therefore are poor candidates for zircon dating applica-
tions. In contrast, though these eclogites have low overall REE 
concentrations, their parent/daughter ratios for the Sm/Nd and 
Lu/Hf systems are generally higher than for most basaltic rocks. 

useful guide to trace-element chemistry. It is our hope that this 

suitable for particular geochronologic studies.
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