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A modeling approach to understanding the role of microstructure development on crystal-
size distributions and on recovering crystal-size distributions from thin slices
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ABSTRACT

Computer modeling of microstructure development was used to determine whether competition for 
-

lization kinetics. Microstructures were modeled with prisms, plates, and cuboids, respectively. In all 
cases, the true CSDs calculated from crystal volumes in the microstructure corresponded closely with 
the linear ideal CSDs predicted by crystallization equations indicating that grain impingements did 

measured in 2-dimensional slices through the microstructures to test if the CSD information could 
be recovered. For prisms and plates, the recovered CSDs compared favorably with the true CSDs, 
but cuboids yielded mixed results depending on their shapes and need further study. For prisms, the 
recovered CSDs were linear and for plates slightly curvilinear. These results indicate that rocks with 
recovered, curvilinear CSDs should be interpreted cautiously as indicators of complex crystallization 
histories, and that petrographic examination should have precedence in such interpretations. 
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INTRODUCTION

Crystal-size distribution (CSD) theory was developed by 
Randolf and Larson (1971) to quantify industrial crystallization 
processes. The theory was adapted to magma crystallization by 
Marsh (1988, 1998) and Cashman and Marsh (1988), and others 
have since used it to reconstruct kinetic and dynamic models of 
magma emplacement and crystallization (Armienti et al. 1994; 
Higgins 1998; Zieg and Marsh 2002; Mock et al. 2003; Binde-
man 2003). Although the theory is now generally accepted, Pan 
(2001) argued that CSDs contain a bogus pattern unrelated to the 
crystallization kinetics [see responses by Schaeben et al. (2002) 
and Marsh (2002)]. Nevertheless, the need for validation of CSDs 
recovered from microstructures is critical to advance and draw 
reliable conclusions. A few studies have dealt with this need 
(Castro et al. 2003; Bindeman 2003; Gualda 2006; Mock and 
Jerram 2005). The present investigation addresses this need by 
comparing CSDs recovered from crystal intersection widths and 
lengths obtained in slices through microstructures with the true 
or actual CSDs calculated from the known crystal volumes.

Some of the early computer models simulated recrystalliza-
tion in metals and ceramics graphically using small discrete 
area units (Anderson et al. 1986; Grest et al. 1986; Nasello and 
Ceppi 1986; Ohser and Muecklich 2000). More recent models 
have dealt with crystallization of igneous textures in both two 
and three dimensions. Elliott et al. (1997) measured dihedral 
angles between grains in slices to distinguish non-equilibrated 
textures, and Cheadle et al. (2004) measured porosity and perme-
ability along grain boundaries to estimate the amount of trapped 
melt. Hershum and Marsh (2002) developed a 2-dimensional 

model using discrete area units to represent melt and solids and 
then compared textures formed by constant crystal growth and 
dispersive growth. Hershum and Marsh (2006) developed a 3-
dimensional model in which Avrami crystallization controlled 
the timing of crystal nucleation and growth. Although their 
approach is fundamentally sound for continuous nucleation 
and growth processes, Avrami control appears to result in some 
timing problems between nucleation and growth when they are 
modeled in discrete time stages. Amenta (2001) and Amenta et 
al. (1992, 1997a, 1997b, 2002) developed 2- and 3-dimentional 
models in which crystals grew using their own internal lattice 
patterns as distinct from the voxel method of representing por-

incorporate crystal nucleation and growth laws, was used in the 
present investigation.

Crystal sizes measured from slices must be corrected for the 
intersection probability effect and the cut-section effect (Under-
wood 1970). Corrections for the former are simple for spheres 
(Royet 1991), and correction schemes have been developed for 
other shapes (Saltikov 1967; Royet 1991; Peterson 1996; Saha-
gian and Proussevitch 1998). Corrections schemes for the latter 
are complex and highly dependent on crystal shapes (Saltikov 
1967; Sahagian and Proussevitch 1998; Higgins 1994, 2000). 
Both corrections are incorporated in the program CSDCorrec-
tions (Higgins 2000), which was tested on tetragonal prisms and 
plates but apparently not on cuboids (rectangular parallelepipeds 
that have three unequal axes). The primary recovery method used 
in the present investigation is CSDCorrections and the secondary 
method for comparison is that of Underwood (1970) and Marsh 
(1988) that corrects only for the intersection probability effect. 

Several studies have tried to identify the measurable param-* E-mail: amentarv@jmu.edu
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eters of crystals in thin section that are the most reliable indicators 
of crystal sizes (Chayes 1950; Higgins 1994; Peterson 1996; 
Sahagian and Proussevitch 1998). Higgins and Peterson found 
that the intersection width best represents the short dimension 
of tetragonal prisms and intersection length the intermediate 
(=long) dimension of tetragonal plates. Peterson found that sizes 
of cuboids could not be reliable determined from slices, yet Hig-
gins suggested that the intersection length is the best indicator 
for the intermediate dimensions of cuboids. The present study 
will try to clarify this. There is yet no clear choice between us-
ing direct measurements of intersection widths and lengths vs. 
the major and minor diameters of ellipses. It is probably more 
important to be consistent using the same method when com-
paring CSDs recovered from thin sections. In the present study, 
ellipse diameters (as opposed to radii) were used as indicators 
of crystal size, and for consistency, the term “diameter” rather 

of the study deals with computer modeling of crystallization with 
development of microstructures. The second part deals with as-
sessing the recovering of CSD information from 2-dimensional 
slices through the microstructures. 

MODELING CRYSTALLIZATION

The computer model used in this analysis has been described in detail (Amenta 

model that relate to crystal nucleation and growth. A critical part of any crystal-
lization algorithm is the method chosen to measure a crystallization time-step since 
computer time obviously is not such a measure. Hersum and Marsh (2002, 2006) 
related time to the percent crystallization as predicted by an Avrami function. To 
better synchronize nucleation and growth, we did not use an Avrami function but 
linked a time-step unit directly to a growth stage, the span in which all crystals 
have grown by a constant increment in diameter, L. Thus nucleation occurred 
in a burst at the beginning of each growth stage or time step. Crystal nuclei were 
located and oriented randomly in the available unoccupied space, and crystals did 
not move once they were positioned. Time-steps units were dimensionless and 
consisted of a sequence of integer numbers (i.e., 1,2,3...n). 

Each crystal was assigned a reserve quota of unit cells that were drawn upon 
for the crystal to achieve its new diameter. Each quota was calculated on the basis 
of the expected volume increase of that crystal. All crystals began to draw on their 
quotas at the beginning of the growth stage. A growth stage had several iterations 
in which a unit cell was added to each crystal in the population in a sequential 
fashion. Thus, unit cells were added to each crystal at the same rate ensuring that 
both large and small crystals competed equitably for space. Iterations were repeated 
until all crystals had either exhausted their quotas, or had become inactive due to 
impingements. A crystal became inactive when a unit-cell vacancy in the crystal 
lattice could not be found after a large number of failed search attempts. Small 
crystals had fewer cells in their quotas than large crystals, so the small crystals 

was cubic with a unit-cell spacing of 0.4 mm (unit-cell volume of 0.064 mm3). 
This spacing was chosen because it optimized the resolution of individual crystals 
by their pixel patterns in the microstructure. Smaller spacing decreased resolution 
and incurred longer computer run times. Crystals that grew and impinged against 
the boundaries of the chamber obeyed the same rules as if impinging against other 
crystal boundaries, i.e., their unit cells were located elsewhere within their lattices, 
thus the volumes and sizes of these boundary crystals would be as predicted by their 
quotas. The crystallization chamber was setup as a cube subdivided into 100  100 
100 mm3 integer volume units. The unit cells were mapped into these volume units 

database of unit cells joined to crystals in relative time order, and each cell was 

to determine the volumes and sizes of the crystals as explained below.
Many rocks contain linear or nearly linear CSDs (Higgins 2006), and the as-

were modeled in the present study with an algorithm in which all crystals grow by a 
constant diameter increment with each time step coupled with a nucleation rate that 
increases exponentially with time. The following discrete equations predict ideal 

crystal sizes and their CSDs without regard to unit cells making up the crystals. 
The bin width was determined by Equation 1, and the number of crystals (all equal 
in size) in each bin determined by Equations 3 and 5. 

L = constant  (1)
t = 1   (2)

t = 0,1,2,3...tc  (3)
G = L/ t = constant (4)
Nt = e(at).  (5)

L is the change in a crystal short diameter at the end of each growth stage 
and time-step unit, t, and G is the crystal growth rate constant. The clock that 
counted the number of growth stages is t, and the characteristic crystallization time 
that marked the effective end of crystallization is tc. Nt is the number of new nuclei 
formed at each time step, and the exponential nucleation constant is a. Values of L
were restricted to 0.20 mm, and a to values less than 1.0/t. These values ensured 
that Nt did not grow too large and dominate crystallization, that there were a suf-

resolution problem in the measurement of very small crystal sizes was minimized. 
To ensure linearity in the CSDs, the nucleation rates were not based on the amount 
of melt remaining in the chamber (Marsh 1998). Instead, the chamber was open 
with respect to the melt, but closed with respect to crystallization. 

In a log-linear CSD plot, the slope is negative because the crystal sizes in-
crease with time as their numbers decrease. The slope of a CSD resulting from 
applying Equations 1, 2, and 3 can be determined by differentiation and is equal 
to the ratio of the nucleation constant, a, and crystal growth rate constant, G, as 
shown in Equations 6 and 7

d[ln(Nt)]/dL = (–)d [ln e(at)]/d (Gt) (6)
(–)d [ln e(at)]/d (Gt) = (–)a/G.  (7)

The ideal short diameters, Sideal, of the crystals in each bin were calculated 
by Equation 8,

Sideal = (t)( L)    (8)

where t is the growth time for the crystals in that bin size. Note that the population 
density Equation 9 has a form similar to Equations 6 and 7,

d ln(n)/dL = (–)a/G (9)

where n is the population density, i.e., the number of crystals/bin width/system 
volume or 1/mm4.

It should be noted that a more frequently cited equation of the slope of a 
log-linear CSD is Equation 2 in Marsh (1998) and restated below as Equation 10 
where  is the average residence time for crystals moving in and out of a dynamic 
crystallization system at steady state:

d ln(n)/dL = 1/G (10)

In closed, non-steady state systems, as in the present study, the average resi-
dence time has a different meaning and Equation 9 does not strictly hold. 

VALIDATING THE RESULTS OF THE CRYSTALLIZATION
MODEL

Qualitative and quantitative methods were used to validate 
that the crystallization model generated microstructures and 
CSDs consistent with the experimental control parameters. 
The similar appearances of grain sizes and shapes in three 
perpendicular slices through the chamber suggested that the 
microstructures were uniform in three dimensions. In many slices 

rather than uniformly distributed, and that the latest nuclei or 
smaller crystals tended to be located in these pockets. Despite 

other crystals, their basic shapes were still discernible from the 
shapes of their intersection polygons in the slices (Higgins 1994, 
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2000). For example, slices through microstructures composed of 
tetragonal prisms revealed numerous, irregular, square-shaped 

crystal diameters (Fig. 1a), and slices through microstructure 
composed of tetragonal plates revealed numerous, irregular, 

and long crystal diameters (Fig. 1b). 
Using a numerical validation approach, we next determined 

how the true numbers of crystals in each bin size compared to 
the ideal numbers predicted by the model. These numbers are 
extensive parameters related to the size of the chamber, and 
they serve to relate the actual numbers of crystals grown rela-
tive to the chamber volume. We will designate them as the true 
population CSD and the ideal population CSD, respectively, in 
contrast to their population density CSDs to be discussed later. 
An ideal crystal size is a pure geometric measure as predicted 
by Equation 8. 

The actual long diameters of crystals could not be measured 
directly due to algorithmic problems. Some of the larger crystals 
had outliers of unit cells that extended beyond their host crystals 
causing errors in their length calculations. Instead, the true vol-
ume of a crystal, Vtrue, was calculated by multiplying the unit-cell 
volume by the number of cells, c, in the crystal (Eq. 11)

Vtrue = c(0.064)mm3.  (11)

Since Figures 1a and 1b suggest that crystal shapes and axial 

the crystal volume can be related to its axial ratios expressed as 
(1:j:k) (short:intermediate:long) in Equation 12

Vtrue = Strue (1) Strue (j) Strue (k) mm3. (12)

Combining Equations 11 and 12 and solving for the true 
short diameter gives

Strue
c( . )

( )( )
0 0643
j k  mm. 

(13)

Equation 13 gives the program output in terms of true short 
diameters, which is analogous to Equation 8, which gives the 
program input in terms of ideal short diameters. The long diam-
eters, however, were used as the measure of crystal sizes in all 
the CSD plots to be consistent with the CSD results of CSDCor-
rections. The long diameters were calculated by multiplying Strue

and Sideal by k. It should be noted that the long diameters could 
be calculated directly by expressing the axial ratios as i:j:1, but 
the results are the same.

The true population and ideal population CSDs for seven 
microstructures, each composed of unique crystal shapes are 
shown in Figure 2. Overall the ideal population CSDs showed 
almost straight alignment of data points (excluding the few larger 
crystals) as predicted by Equation 7. The true population CSDs, 
as expected, showed more scattering of points especially in the 
larger and smaller bins sizes. The scatter is probably caused by 
several factors including the effects of crystal impingements 
on crystal growth, the growth of batches of crystals in discrete 
stages rather than in a continuous manner, the paucity of large 
crystals, and the high sensitivity of the smallest crystals to large 
percentage changes in their volumes. Most of this scatter appears 
to be random and non-systematic as shown in data sets of prisms 
1:1:5 (Fig. 2a), plates 1:3:3 (Fig. 2d), and cuboids 1:2:5 (Fig. 2g); 
and in these there is very close agreement between the slopes 
of the true CSDs and their respective ideal CSDs. This scatter 
could be explained by grain impingements that would cause the 
populations in certain bins to decrease and those of adjacent bins 
to increase. However, the CSDs of prisms 1:1:3 (Fig. 2b), plates 

FIGURE 1. Examples of microstructures viewed in digital slices cut through the crystallization chamber. The chamber is 100  100  100 mm3, 
and the slice dimensions are 100  100 mm2. CSDs were recovered from measurements of 2-dimensional crystals sizes from such slices. (a) Slice 
shows microstructure composed of prism-shaped crystals with dimensional ratios 1:1:5. Crystal boundaries have been outlined by hand. Note 
abundance of square sections. (b) Slice shows microstructure composed of plate-shaped crystals with dimensional ratios 1:5:5. Crystal boundaries 
have been outlined by hand. Note abundance of blade-like sections.
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1:5:5 (Fig. 2c), cuboids 1:3:5 (Fig. 2f), and cuboids 1:4:5 (Fig. 
2e) also each contained an anomalous low point in the small bin 
sizes. These anomalies appear to be similar systematic errors 
incurred in calculating crystal volumes based on the number of 
contained unit cells. A unit cell comprises a large percentage of 
the volume of a small crystal, and the presence or absence of a 
cell can change the bin size of the crystal. Although the anoma-
lies produced small biases in the CSD slopes, we included the 
points in the regressions because we did not want to alter the 
CSD information in the primary data sets. Values of the coef-

R2) for the true CSDs are given in the 

captions of Figure 2. Overall, the slopes of the true CSDs are 
close to their respective ideal ones. The percent slope devia-
tion is +0.584% for the prisms 1:1:5; –3.79% for prisms 1:1:3; 
–4.96% for plates 1:5:5; –0.593% for plates 1:3:3; –3.56% for 
cuboids 1:4:5; –6.23% for cuboids 1:3:5; and +1.49 for cuboids 
1:2:5. A negative percent difference indicates that the true CSD 
slope was less than the ideal CSD slope. The higher negative 
deviations are caused by the anomalous low points referred to 
above and not by the microstructure, so if the low points had been 
excluded then all deviations would probably have been less that 
1.5%. These results suggest that the microstructures appear to 

FIGURE 2. These charts, and Table 1, serve to validate the results of the forward crystallization model by comparing the true numbers of 
crystals in each bin size (dashed line and open circles) with the ideal numbers (solid line and solid dots). The ideal numbers are determined by 
the nucleation function (Eq. 5) at the beginning of each discreet time step. The scatter in the true numbers vs. their bin sizes show the modifying 
affects of the microstructure on grain growth, yet despite this scatter (see R2

CSDs are in close agreement with the ideal CSDs. (a) prisms 1:1:5, R2 = 0.9677; (b) prisms 1:1:3, R2 = 0.9375; (c) plates 1:5:5, R2 = 0.9163; (d) 
plates 1:3:3, R2 = 0.9579; continued next page.
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of crystal shapes by grain-to-grain impingements. These results 
also helped to validate that the crystals that have grown into the 
chamber boundaries are the correct sizes as would be expected 
by their assigned volume quotas of unit cells.

all of the crystals in the chamber were used to compare the total 
true volume of crystals with the total ideal volume of crystals 
and the volume of the chamber. Most of the crystallization 
experiments required about 25 days of PC computer time to 
reach 98% crystallization as measured by the number of integer 
volume units in the chamber occupied by crystals. Additional 
time produced very little increases in crystallization. However, 
a better measure of the percent crystallization achieved is based 
on the summation of the unit-cell volumes for each crystal in 
the chamber using Equation 11. By this measure, the total true 
volumes of crystals range from 85 to 97% of the chamber (Table 

1). It is interesting to compare this range with the total ideal vol-
umes of crystals (Table 1) that range from 91 to 111% (note that 
the ideal sizes of crystals are not constrained by impingements, 
and their total volume can exceed the size of the chamber). The 
total ideal volumes of crystals is based on a summation of all the 
ideal crystal volumes using an equation similar to Equation 12. 

the constrained growth of the true crystals in the microstructure. 
The volume difference may be viewed as that associated with 

grain boundaries. However, the grain boundary volumes in our 
microstructures depend on the arbitrary unit-cell spacing of 0.04 
mm used in this study and should not be extrapolated to grain 
boundary volumes and porosities in rocks.

RECOVERING CSD INFORMATION FROM THIN SLICES

In the previous section, we demonstrated that a computer model 
generates microstructures containing true CSDs that are close to 
the ideal ones predicted by the crystallization kinetics. We will 
now evaluate how well the known true CSDs can be recovered 
from 2-dimensional slices through the microstructure using the 
program CSDCorrections (Higgins 2000) version 1.36, and the 
method of Underwood (1970). A 2-dimensional slice through the 
chamber is obtained by sorting the database for all unit cells in 
a given plane. For example, if the Z dimension of the chamber 
ranges from 0 to 100 mm, a plane perpendicular to Z that has a 

with coordinates (X,Y,50.0–51.0). When these cells are plotted 
graphically, each crystal assumes a distinct pixel pattern due to 
the slice angle through its lattice. The resulting image resembles 
that of a thin section 100 ! 100 mm2 (Figs. 1a and 1b). To facili-
tate measuring crystal outlines, small subsets of widely separated 
crystals were selected from the slice (Fig. 3). Each crystal outline 
was traced by hand using image analysis software, and the major 
and minor axes of its approximating ellipse were determined. We 
shall use these axes as representations of the intersection length 

FIGURE 2.—Continued: (e) cuboids 1:4:5, R2 = 0.9156; (f) cuboids 
1:3:5, R2 = 0.8992; and (g) cuboids 1:2:5, R2 = 0.98798.
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and width, respectively. 
Between 1300 and 2300 crystals were measured in each 

experiment (Table 1) depending on the average grain size of 
the microstructure, which required three mutually perpendicular 
slices taken through the center of the chamber. Crystals touching 
the slice boundaries were included in the CSD analyses that fol-
low, and the reason for doing so is described later. Some crystals 
had outliers (Fig. 3), which appeared to be detached from the 
host, but tests using parallel serial slices revealed that the outliers 
were connected to their hosts in 3-dimension. The areas of the 
outliers were included within the outline traces of their hosts to 
account for the entire surface area of each crystal in the slice. In 
each data set, we tested both the intersection lengths and widths 

Higgins (1994) and Peterson (1996) that the intersection widths 
best correlate with the short diameters of tetragonal prisms and 
intersection lengths with the intermediate diameters of tetragonal 
plates. With cuboids in general, the choice of the best indicator 
of crystal size remains a problem. Higgins (1994) reported that 
the intersection length was the best indicator of crystal size. Our 

in which the intermediate diameter approaches the long diameter. 
This subclass will be discussed later. 

Crystal sizes were measured in slices through the seven 
microstructures, and these data sets are summarized in Table 
1. The intersection length or width that is the best measure of 
crystal size is indicated, but it should be noted that in all graphs, 
crystals sizes are recast as long diameters regardless of the 
intersection distance measured. The CSDs recovered from the 
slices are shown in the graphs of Figures 4a–4g. In each graph, 
the true CSD is compared to that recovered using the primary 
method of CSDCorrections and the secondary method of Under-

results of CSDCorrections to compare their slopes and intercept 
values with the corresponding true sizes CSD. Higgins (2000) 
recommended using a grouping of 5 log10 bins per decade with 
continuously variable crystal sizes. We explored various bin 
size groupings because our synthetic data were in discrete size 
groupings. Optimum results were obtained using 6 log10 bins 
per decade, which resulted in approximately 10 bins of unequal 
width with the largest width containing the largest crystals sizes. 
This minimized the scatter of points due to the paucity of large 
crystals, but may account for the scatter of points in the smallest 
sizes. We used the Underwood method (1970) as a secondary 
method but the bin widths were doubled (2 L) to reduce scatter. 
The Underwood method was useful for identifying whether the 
intersection width or length was the best measure for crystal size, 
and it yielded sizes for the largest crystals that better matched 
the true and ideal crystal sizes.

In general, CSDCorrections yielded the best approximations 
to the linear slopes and vertical intercept values of the true crys-
tal sizes CSDs (Fig. 4). The Underwood method yielded more 
strongly curvilinear, concave upward, CSDs especially in the 

a linear regression line. Peterson (1996) showed similar curvi-
linear trends for CSDs recovered from his synthetic linear data 
sets although he used different stereological correction methods. 
Peterson (1996) suggested that, because the largest crystals are 
too few in number and the smallest crystals have measurement 
resolution problems, only the intermediate bin sizes by used 
in the regression analyses for the CSD. We also found that the 
intermediate bin sizes in our data sets, were better behaved than 
the largest and smallest bin sizes. For example, in some data sets 
CSDCorrections yielded crystal sizes that were anomalously 

TABLE 1. Parameters from seven computer runs serve to validate the performance of the forward crystallization model
(1) Data set (2) Number of (3) True volume (4) Ideal volume (5) Number of (6) Number of crystals (7) Intersection 
identify-cation crystals  in chamber of crystals (mm3) of crystals (mm3) crystals measured less crystals width/length.  S, I, or

size of 1003 (mm3) in 2D slices on boundaries L crystal dimension
Prisms (a) 1:1:5 18 869 914 005 966 057 1386 1216 width, S
Prisms (b) 1:1:3 11 509 853 394 910 590 1543 1340 width, S
Plates (c) 1:5:5 18 203 979 694 1 114 570 2301 2017 length, L
Plates (d) 1:3:3 16 438 900 564 944 237 2044 1825 length, L
Cuboids (e) 1:4:5 9018 958 381 1 128 585 1298 1097 length, I
Cuboids (f ) 1:3:5 11 016 962 449 1 041 728 1644 1423 length, I
Cuboids (g) 1:2:5 16 438 914 045 966 057 1973 1710 width?, I 
Notes: Column 1 identifies the crystal shape ratios used in each experiment. Column 2 contains the total number of crystals grown in each experiment in a chamber 
size 100 100 100 mm3. Column 3 shows the true or actual volume of crystals grown in the chamber. Column 4 shows the ideal volume of the same crystals 
if they had been able to grow in free space with ideal sizes and shapes. Note that the ideal volumes in the three data sets—c, e, and f—exceed the size of the 
chamber. Column 5 shows the total number of crystals measured in two or three orthogonal slices through the chamber. Column 6 shows the number of crystals 
in the subset that do not touch the boundaries of the slices. Column 7 identifies the crystal’s intersection width or length as the best indicator of the crystal’s small 
diameter (S), intermediate diameter (I), or long diameter (L).
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FIGURE 3. Slices that contain subsets of crystals allow crystal 
boundaries to be easily traced as shown in this subset of prisms (1:1:5). 

Note that host crystals 25 and 577 appear to have detached outliers, but 
the outliers are actually connected to their hosts in 3 dimensions. 
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larger than those yielded by the Underwood method and those 
in the true sizes (Figs. 4c, 4d, and 4f). This discrepancy could 
not be due to our use of axes of ellipses as measures of inter-
section distances because this convention was also used in the 
Underwood method. Therefore, we did not include the anomalous 
points in the regressions although we showed them in Figures 
4d, 4c, and 4f. The points for the smallest crystal sizes showed 
the most scatter, but we included them in the regressions because 
the scatter appears to be random. 

CSDCorrections gave the best overall agreement between 
the recovered CSDs and the true sizes CSDs especially in the 
prisms. The data sets in which the recovered CSDs most closely 

in Figure 4. In the prisms 1:1:5 (Fig. 4a) and 1:1:3 (Fig. 4b), 
CSDCorrections yielded linear trends of points with very good 
agreement in their CSD slopes with those of the true sizes CSDs. 
In the prisms 1:1:3, a higher vertical intercept (nucleation density 
when crystal size, L, approaches zero) translated into slightly 

FIGURE 4. These charts compare the CSDs recovered with CSDCorrections (bold dashed lines and open circles) with those recovered with 
the Underwood method (thin dashed lines and crosses) with the CSDs of the true crystal sizes (solid lines and dots). The Underwood method 
consistently produced more pronounced curvilinear CSDs. The CSDs from CSDCorrections yielded the best overall approximations of linearity, 
slope, and intercept values. The R2 and rs values for CSDCorrections are listed below. (a) prisms 1:1:5, R2 = 0.960 and rs = –0.996; (b) prisms 1:1:3, 
R2 = 0.903 and rs = –0.867; (c) plates 1:5:5, R2 = 0.991 and rs = –0.964; (d) plates 1:3:3, R2 = 0.990 and rs = –0.952; (e) cuboids 1:4:5, R2 = 0.976 
and rs = –0.964; and (f) cuboids 1:3:5, R2 = 0.951 and rs = –0.820; CSDCorrections yielded less satisfactory CSD approximations for (g) cuboids 
1:2:5, R2 = 0.740 and rs = –0.762 but results were better than those of the Underwood method. 
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larger overall population densities than those of the CSD if the 
true sizes. The Underwood method yielded curvilinear trends 
and in the prisms 1:1:3 smaller overall population densities. In 
the plates 1:5:5 (Fig. 4c) and 1:3:3 (Fig. 4d), CSDCorrections 
yielded slightly curvilinear trends and anomalously large crystal 
sizes. In the plates 1:3:3, CSDCorrections yielded a higher ver-
tical intercept and slightly larger over all population densities, 
whereas the Underwood method yielded curvilinear trends. In 
the cuboids 1:4:5 (Fig. 4c) and 1:3:5 (Fig. 4f), CSDCorrections 
yielded curvilinear trends, and in the cuboids 1:3:5, it yielded 
an anomalously large crystal size that was off the trend; the 
Underwood method yielded pronounced curvilinear trends. The 

R2) values for the results of CSD-
Corrections are given in the captions of Figure 4. The Spearman 

rs, that do not depend on the 
normal distribution of the residuals from a straight line, are also 

given to better substantiate our results.
The percent slope difference between the CSD slope re-

covered with CSDCorrections and the true sizes slope for each 
data set are –2.9% for prisms 1:1:5, –3.4% for prisms 1:1:3, 
+12.3% for plates 1:5:5, –10.7% for plates 1:3:3, –5.6% for 
cuboids 1:4:5, and –13.2% for cuboids 1:3:5. A negative percent 
difference indicates the recovered CSD slope was less than the 
CSD slope for the true sizes. The closest slope agreement was 
found in the prisms, and the greatest difference was found in 
the cuboids. It should be noted that the Underwood method in 
some cases gave better slope agreements but the trends were 
markedly curvilinear.

The cuboids above belong in a class in which the length of the 
intermediate crystal diameter is closer to that of the long diameter, 
and in these cuboids, the measured intersection lengths appeared to 
correspond to the intermediate crystal diameters (Higgins 2000), 
and CSDs based on intersection lengths closely approximate the 
true sizes CSDs. However, cuboids (1:2:5) belong in an ill-behaved 
class. CSDCorrections yielded imperfect results using intersec-
tion widths (slope = –0.273, intercept = –5.47, Fig. 4g) but even 
worst results using intersection lengths (slope = –0.285, intercept 
= –7.16). The latter CSD is not shown since its population densities 

= –5.53). The results with this class of cuboids indicate that better 
stereological corrections need to be devised. 

EVALUATING THE EFFECTS OF SLICE BOUNDARIES ON
THE RECOVERED CSDS

The recovered CSDs shown in Figure 4 are based on all the 
crystals in each slice, including the crystals touching the slice 
boundaries. Each slice contained about 500 to 600 crystals and 
the boundary crystals were included comprise about 10%. The 
boundary crystals in the analyses of Figure 4 to test the accuracy 
of the stereological corrections for converting crystal area popu-
lation densities in the slice to crystal volume population densities 

FIGURE 4.—Continued
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in the chamber. Another consideration was that the inclusion of 
the boundary crystals in the analyses maximized the number of 
crystals measured per slice. Even so, this number was low com-
pared to rock thin sections, so at least three slices were needed 
for each data set. Furthermore, because most of the perimeter 
lengths of the boundary crystals were impingement contacts with 
other crystals, the growth environment of the boundary crystals 
appeared to be similar to that of the interior crystals. 

affect on the recovered CSDs, subsets of the seven main data 
sets were formed that excluded the boundary crystals. Each 
subset contained about 10% fewer crystals than their respective 
main data sets (Table 1). The areas of the boundary crystals 
were subtracted from the total area of each slice to scale the 
remaining area population of crystals to the net slice area, and 
the CSDs were recovered on the subsets with CSDCorrections. 
The percent slope difference between CSDinclude and CSDexclude

is 0.00% for the prisms 1:1:5; –5.10% for prisms 1:1:3; –3.99% 
for plates 1:5:5; –7.36% for plates 1:3:3; –1.63% for cuboids 
1:4:5; –6.67% for cuboids 1:3:5; and –9.16% for cuboids 1:2:5. 
A negative value indicates that the slope of CSDexclude is steeper 
than the slope of CSDinclude. Representative results are shown for 
the plates 1:5:5 in Figure 5. Note that the vertical intercepts of 
the two CSDs are in close agreement and that the steeper slope 
of CSDexclude is due largely to a reduction in the population den-
sities in its larger crystal sizes. The reason for this can be seen 
in the microstructure of Figure 1b in which more large crystals 

than small ones touch the slice boundaries. This is a case of the 
intersection probability effect of the slice boundaries that are 
more likely to encounter large crystals and less likely to encounter 
small ones. Because the large crystals have lower population 
densities than the smaller ones in the main data sets, removal of 
the boundary crystals resulted in greater reduction in the popula-
tion densities of the large crystal sizes in CSDexclude than in the 
small crystal sizes, as shown in Figure 5. Thus, we have chosen 
not to exclude the boundary crystals from the analyses in Figure 
4, because any effects of the slice boundaries on crystal shapes 
is probably minor compared to the bias produced by excluding 
the boundary crystals. 

DISCUSSION AND CONCLUSIONS

Our results suggest that computer modeling of crystallization 
can be used to better understand and constrain kinetic interpre-
tations from crystal-size distributions in microstructures. The 
grain boundaries in our modeled microstructures are the result 
of dynamic competition for crystal growth space as in the models 
by Elliott et al. (1997). Slices through the modeled microstruc-
tures formed by prisms and plates show grain outlines similar 
to the intersection polygons through prisms and plates reported 
by Higgins (2000, Fig. 2). Similar grain outlines are commonly 
observed in thin sections of prismatic pyroxenes and platy 
plagioclases and micas. The modeled microstructures resemble 
the hypidiomorphic microstructures in some granites, although 
their monomineralic character would suggest better comparisons 
with non-cumulate pyroxenites, dunites, or anorthosites, or 
with clusters of pyroxene or plagioclase in diabases. The model 
results suggest that CSD information could be preserved in the 

by secondary recrystallization processes than by the primary 
competition among growing crystals for space. 

To generate the largest number of crystal shapes of the same 
type for each CSD database, our model dealt with development 
of microstructures composed of a single phase. Models that deal 
with more than one phase produce microstructures that are more 
realistic analogues for those in igneous rocks (e.g., Hersum and 
Marsh 2006). The growth of crystals by accretion of discrete 
volume units or unit cells is intended to simulate how real crystals 
grow by incorporating groups of atoms on to their surfaces. This 
also would provide a basis for recording the spatial compositions 
of minerals in future crystallization and recrystallization experi-
ments. However, a problem with the method of growing crystals 
by accreting unit cells is that locating potential attachment sites 
requires increasingly more search time as crystals begin to 
impinge upon one another. Our computer runs that generated 
the microstructures took from three to four weeks. Larger scale 
models that implement crystal growth by unit cells would require 
algorithmic improvements and more computer power. 

It would seem that the implementation of growth of stationary 
crystals in the model would be a severe restriction because crys-
tals in a magma may be mobile depending on dynamic conditions. 
An early prototype program attempted to move 2-dimensional 
crystals that did not contain unit-cell structures (Amenta et al. 
1992), but the algorithm proved too demanding in computer 

FIGURE 5.
data sets. It compares the CSDs recovered with CSDCorrections on the 
data that include the crystals on the boundaries of the slices (dashed 
lines through open circles) and on the data subsets that exclude the 
boundary crystals (solid lines through closed circles). The steeper 
slopes of CSDexclude are believed to be due to the higher probability of 
the boundaries intersecting large crystals and avoiding small ones, hence 
excluding the boundary crystals would impose a negative bias in CSD 
slopes. The number of crystals in each data set are given in Table 1.  
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time for moving 3-dimensional crystals with unit-cell structures. 
Although in real magmatic crystallization some crystal mobility 
may be likely during early stages of crystallization when crystals 
are few and magma viscosity is low, ultimately immobility would 
set in during late stages of crystallization as crystal contiguity 
and effective magma viscosity increase. The implication of the 
stationary growth model is that some crystals that do not have 
near neighbors may have unrestricted growth for longer periods 
during their growth history, but this situation is unlikely due to 
the random positioning of nuclei. Thus, we do not think that the 

in our microstructures. 
Our crystallization model has shown that the true CSDs in 

the microstructure are in close agreement with the ideal ones 
although the former exhibit more scatter of points relative to 
their regression lines. In recovering CSDs from 2-dimensional 

intersection widths are the best indicators of size for prisms and 
the intersection lengths are the best indicators for plates (Higgins 
1994; Peterson 1996). CSDCorrections performed better than the 
Underwood method for approximating the true linear CSDs in the 
prisms, but produced slightly curvilinear CSDs in the plates and 
cuboids. The Underwood method produced CSDs with largest 
crystals in better agreement with the largest crystals in the true 
sizes, but the CSDs were strongly curvilinear. CSDCorrections 
gave mixed results with cuboids. For cuboids in which the in-
termediate diameter is closer to the long diameter, the intersec-
tion lengths were the best indicator for the intermediate crystal 
diameter; but for cuboids in which the intermediate diameter is 
closer to the short diameter neither the intersection width nor 
intersection length were a good indicator of crystal size. 

ACKNOWLEDGMENTS
This research was supported by the Donors of the American Chemical Society 

Petroleum Research Fund grant PRF-39580-B2, and by the Division of Materials 
Research of the National Science Foundation REU grants DMR-0097449 and 
DMR-035377. I thank Bruce Marsh for suggesting the application of computer 
modeling for validating CSD recovery methods and for his encouragement and 
help, Michael Zieg for showing me how he measured real crystal-size distributions 
in his laboratory at Johns Hopkins; and Alex Mock, David Brakke, and Michael 
Higgins for their reviews and helpful criticisms of this manuscript. 

REFERENCES CITED
Amenta, R.V. (2001) Three-dimensional computer modeling of fabric evolution in 

igneous rocks. Computers and Geosciences, 27, 477–483.
Amenta, R.V., Cooper, J.M., Bunting, R., and Romeo, C. (1992) Simulating fabric 

development in igneous rocks: A solution for modeling space competition among 
growing crystals. Computers and Geosciences, 18, 763–766.

Amenta, R.V., Holyoke, C.W., Myers Krohn, T.G., Bonder, M.J., and Leopold, M.C. 
(1997a) Undergraduate research in petrology approached through computer 
modeling of fabric evolution in igneous rocks. Journal of Geosciences Education, 
45, 205–206. 

Amenta, R.V., Bonder, M.J., Holyoke, C.W., Krohn, T.G.M., Leopold, M.C., and Miller 
C.C. (1997b) Computer modeling of microstructure evolution in polycrystalline 
materials and the formation of growth collision boundaries between crystals. 
Proceedings of the Ninth International Conference on High Temperature Materials 
Chemistry, 97, 397–404.

Amenta, R.V., Dadvar, P., Rodgers, R., and Ruotolo, G. (2002) Computer modeling 
of crystallization and crystal size distributions. Eos Transactions AGU, 83, Spring 
meeting supplement, abstract V51B-05.

Anderson, M.P., Grest, G.S., and Srolovitz, D.J. (1986) Microstructural dynamics of 
primary and secondary recrystallization. In D.J. Srolovitz, Ed., Computer Simula-
tion of Microstructural Evolution, p. 77–93. Metallurgical Society, Warrendale, 
Pennsylvania.

Armienti, P., Pareschi, M.T., Innocenti, R., and Pompilio, M. (1994) Effects of magma 
storage and ascent on the kinetics of crystal growth: The case of the 1991–93 Mt. 
Etna eruption. Contributions to Mineralogy and Petrology, 115, 402–414.

Bindeman, I.N. (2003) Crystal sizes in evolving silicic magma chambers. Geology, 
31, 367–370.

Cashman, K.V. and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the 
kinetics and dynamics of crystallization II. Makaopuhi lava lake. Contributions to 
Mineralogy and Petrology, 99, 292–305.

Castro, J.M., Cashman, K.V., and Manga, M. (2003) A technique for measuring 3D 
crystal-size distributions of prismatic microlites in obsidian. American Mineralo-
gist, 88, 1230–1240.

Chayes, F. (1950) On the bias of grain-size measurements made in thin section. Journal 
of Geology, 58, 156–160.

Cheadle, M.J., Elliot, M.T., and McKenzie, D. (2004) Percolation threshold and per-
meability of crystallizing igneous rocks: The importance of textural equilibrium. 
Geology, 32, 757–760.

equilibrium in rocks using dihedral angle measurements. Geology, 25, 355–358.
Grest, G.S., Anderson, M.P., and Srolovitz, D.J. (1986) Computer simulation of micro-

structural dynamics. In D.J. Srolovitz, Ed., Computer Simulation of Microstructural 
Evolution, p. 21–32. Metallurgical Society, Warrendale, Pennsylvania.

Gualda, G.A.R. (2006) Crystal size distributions derived from 3D datasets: Sample size 
versus uncertainties. Journal of Petrology, 47, 1245–1254.

Hersum, T.G. and Marsh, B.D. (2002) On the link between crystallization kinetics and 
texture in basaltic rocks. EOS Transactions AGU, 83, Spring meeting supplement, 
abstract V51B-07.

——— (2006) Igneous microstructure from kinetic models of crystallization. Journal 
of Volcanology and Geothermal Research, 154, 34–47.

Higgins, M.D. (1994) Numerical modeling of crystal shapes in thin sections: Estimation 
of crystal habit and true sizes. American Mineralogist, 79, 113–119.

——— (1998) Origin of anorthosite by textural coarsening: Quantitative measure-
ments of a natural sequence of textural development. Journal of Petrology, 39, 
1307–1323.

——— (2000) Measurement of crystal size distributions. American Mineralogist, 85, 
1105–1116.

——— (2006) Quantitative Textural Measurements in Igneous and Metamorphic 
Petrology, 270 p. Cambridge University Press, U.K.

Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and 
dynamics of crystallization I. Theory. Contributions to Mineralogy and Petrology, 
99, 277–291.

——— (1998) On the interpretation of crystal size distributions in magmatic systems. 
Journal of Petrology, 39, 553–599.

——— (2002) Inherited correlation in crystal size distribution: Comment. Geology, 
30, 284–285.

Mock, A. and Jerram, D.A. (2005) Crystal size distributions (CSD) in three dimensions: 
Insights from the 3D reconstruction of a highly porphyritic rhyolite. Journal of 
Petrology, 46, 1525–1541.

Mock, A., Jerram, D.A., and Breitkreutz, C. (2003) Using quantitative textural analysis 
to understand emplacement of shallow-level rhyolitic laccoliths—A case study from 
the Halle Volcanic Complex, Germany. Journal of Petrology, 44, 833–849.

Nasello, O.B. and Ceppi, E.A. (1986) Computer simulation of bidimensional grain 
boundary migration (II). In D.J. Srolovitz, Ed., Computer Simulation of 
Microstructural Evolution, p. 13–20. Metallurgical Society, Warrendale, 
Pennsylvania.

Ohser, J. and Muecklich, F. (2000) Statistical Analysis of Microstructures in Mate-
rial Sciences, 381 p. Wiley, Chichester, U.K.

Pan, Y. (2001) Inherited correlation in crystal size distribution. Geology, 29, 
227–230.

thin section. Contributions to Mineralogy and Petrology, 124, 395–405.
Randolph, A.D. and Larson, M.A. (1971) Theory of particulate processes, 251 p. 

Academic Press, New York.
Royet, J.P. (1991) Stereology: A method for analyzing images. Progress in Neu-

robiology, 37, 433–474.
Sahagian, D.I. and Proussevitch, A.A. (1998) 3D particle size distributions from 

2D observations: Stereology for natural applications. Journal of Volcanology 
and Geothermal Research, 84, 173–196.

Saltikov, S.A. (1967) The determination of the size distribution of particles in an 
opaque material from measurements of the size distributions of their sections. 
In H. Elias, Ed., Proceedings of the Second International Congress of Stereol-
ogy, 167–173. Springer-Verlag, Berlin.

Schaeben, H., van den Boogaart, G.K., Mock, A., and Breitkreuz, C. (2002) 
Inherited correlation in crystal size distribution: Comment. Geology, 30, 
282–283.

Underwood, E.E. (1970) Quantitative Stereology, 274 p. Addison-Wesley, Mas-
sachusetts.

Zieg, M.J. and Marsh, B.D. (2002) Crystal size distribution and scaling laws in the 

MANUSCRIPT RECEIVED AUGUST 4, 2006
MANUSCRIPT ACCEPTED JULY 20, 2007
MANUSCRIPT HANDLED BY RAYMOND JONCKHEERE




