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AbStRAct

The Dabie-Sulu Triassic collisional orogen in eastern Asia was created by northward subduction of 
the Yangtze continental-crust capped plate beneath the Sino-Korean craton. Eclogites, garnet peridotites, 
and surrounding country rock gneisses and marbles were all subjected to in situ UHP metamorphism, as 
indicated by the presence of rare but widespread coesite inclusions in eclogitic minerals and in zircon 
crystals in the country rocks, as well as by virtually identical metamorphic ages of various UHP rock 
types. Metamorphic P-T estimates, combined with investigations of mineral exsolution textures and 
high-P polymorphs, indicate that recovered depths of continental subduction may have exceeded 200 
km. Parageneses of mineral inclusions in zoned zircon domains combined with U-Pb ages delineate 
a well-constrained P-T-time path, suggesting exhumation rates of 5–10 km/Myr. A similar P-T-time 
trajectory has been established for the microdiamond-bearing Kokchetav Massif. Thus far, however, 
diamond inclusions have not been confirmed from coesite-bearing zircon domains of Dabie-Sulu UHP 
rocks despite numerous detailed studies. Oxygen isotopes of minerals from many outcrop samples and 
the Chinese Continental Scientific Drilling (CCSD) project main hole cores indicate that δ18O depletion 
took place in a volume of Proterozoic protoliths exceeding 100000 km3 along the northern edge of 
the Yangtze craton. Evidently, passive-margin sediments and bimodal igneous rocks that had formed 
during rifting and breakup of the supercontinent Rodinia were subjected to extensive meteoric water-
rock interactions attending terminal Neoproterozoic Snowball Earth conditions. Such hydrothermal 
alteration volatilized and depleted C from the relatively oxidized protoliths, accounting for the rare 
occurrences of graphite and apparent lack of microdiamond in Dabie-Sulu UHP rocks.
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intRoduction: uhP MetAMoRPhiSM And
Recent FindingS

Ultrahigh-pressure (UHP) metamorphism refers to the recrys-
tallization of continental and oceanic crustal rocks at pressures 
high enough to form coesite and/or diamond at a minimum P > 
2.7 GPa at T > 600 °C. Figure 1 shows relevant P-T conditions 
defining both UHP and HP (high pressure) metamorphism; in 
addition, geotherms of about 5 °C/km (extremely cold subduc-
tion zones) and 20 °C/km (old descending plates) are illustrated. 
UHP and HP metamorphic conditions are separated by the 
quartz-coesite phase boundary; the graphite-diamond boundary 
further subdivides the UHP regime into diamond (±coesite) and 
graphite (±coesite) P-T fields. Occurrences of the UHP analog 
of rutile as well as supersilicic titanite, and/or K-bearing clino-
pyroxene, and aragonite + magnesite inclusions in garnet from 
Kokchetav microdiamond-bearing gneisses suggest subduction 
depths of ~190–280 km (e.g., see review by Schertl and Sobolev 
2012). The recent interpretation of stishovite pseudomorphs in 
a pelitic gneiss from western China suggests that some conti-
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nental materials might have been exhumed from an even greater 
depth (>350 km?) than commonly accepted (Liu L. et al. 2007, 
2009). Prior to the initial discoveries of coesite in UHP rocks in 
1984 and microdiamond in 1990, coesite, diamond, stishovite, 
and other UHP minerals had only been reported from meteorite 
impact craters and mantle xenoliths (Chopin 1984; Smith 1984; 
Sobolev and Shatsky 1990).

Discovery of tracts of upper continental crust metamorphosed 
under mantle P-T conditions has enriched and extended our 
understanding of plate tectonics (Ernst and Liou 1995). The 
recognition of deep continental subduction responsible for the 
formation and subsequent return of UHP rocks to the surface 
from depths >100 km in collisional mountain belts has been 
intensively studied in the Earth sciences for the last three de-
cades. A continuing explosion of research on global continental 
UHP terranes reflects their significance with regard to mantle 
dynamics and the tectonics of continental evolution, crustal 
subduction, collision, exhumation, mantle-slab interactions, and 
geochemical recycling. Thus far, more than 20 coesite-bearing, 
10 diamond-bearing, and three majoritic garnet-bearing UHP 
regions have been documented globally (for reviews, see Liou 
et al. 2009; Dobrzhinetskaya and Faryad 2011).

Among many recent exciting discoveries of UHP minerals in 
continental collisional zones since 2010, several new occurrences 
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of microdiamond, and other UHP minerals have been reported. 
New findings include, but are not limited to: (1) microdiamond 
inclusions in oceanic-crust derived garnetites from the ophiol-
itic UHP unit in the Italian Western Alps (Frezzotti et al. 2011). 
(2) Microdiamond (±coesite) inclusions in garnet, kyanite, and 
zircon as well as multi-grain clusters within garnet from Va-
riscan HP granulites of the North Bohemian crystalline massif 
(Kotková et al. 2011). (3) Inclusions of polycrystalline diamonds 
associated with nano-scale fluid inclusions at the boundaries of 
microdiamonds in zircon grains from the Erzgebirge Grt-Phe-Ky 
UHP gneiss in Germany (Dobrzhinetskaya et al. 2012). And (4), 
microdiamond and disordered graphite inclusions within garnet 
and pyroxene lamellae in a coarse chromian spinel grain of a 
spinel-garnet peridotite (~6 GPa, 1000 °C) associated with a HP 
granulite in the Bohemian Massif (Naemura et al. 2011). These 
findings reveal that: (1) microdiamonds and other UHP phases 
are more common than previous thought in both Alpine- and 
Pacific-type orogens; (2) the Bohemian microdiamond in HT 
granulites implies that vast regions of crystalline basement have 
been subducted to great mantle depths not only in central Europe 
but also elsewhere; and (3) the close association of garnet peri-
dotites with UHP granulites suggests that these peridotite bodies 
became interdigitated with deeply subducted continental crust 
under UHP conditions rather than being tectonically emplaced 
at shallow crustal levels. (Abbreviations of minerals are after 
Whitney and Evans 2010.)

Moreover, a great range of UHP minerals including diamond, 
possible coesite pseudomorphous after stishovite, Fe-Ti alloys, 
osbornite (TiN), cubic boron nitride (cBN), TiO2II, moissonite 
(SiC), zabonite (FeTiSi2), and Cr-spinel containing exsolution 
lamellae of coesite + diopside recently have been confirmed as 
nano- to micro-scale inclusions in podiform chromitite from the 
Luobusa ophiolite, Tibet (Yang et al. 2007, 2012; Li et al. 2009; 

FiguRe 1. (a) P-T regimes 
assigned to various metamorphic 
types: (1) ultrahigh-P ,  (2) 
high-P, (3) low-P, and (4) 
‘‘forbidden zone” and stabilities 
of coesite, diamond, jadeite, and 
K-cymrite (modified after Liou 
et al. 2004). (b) P-T stabilities of 
additional UHP index minerals 
including pseudomorphic 
stishovite, majoritic garnet, 
high-P  clinoenstatite,  and 
pseudomorphic K-cymrite are 
shown [modified from Fig. 1 of 
Liou et al. (2009)].

Dobrzhinetskaya et al. 2009; Yamamoto et al. 2009). In situ oc-
currences of microdiamond (±moissonite) inclusions in chromite 
grains have been recently recognized in numerous ophiolitic 
massifs along the 1400 km long Yarlung-Zangbo suture zone 
between India and Asia, and in the Polar Ural Mountains (Yang 
and Robinson 2011). The unexpected occurrence of these reduced 
UHP minerals suggests that the chromitites formed at P > 9–10 
GPa at depths of >250–300 km. The presence of UHP minerals 
within ophiolitic chromitite has been considered “forbidden” 
by conventional concepts of ophiolite genesis under high-T, 
low-P conditions in mid-oceanic ridges or back-arc spreading 
axes. These findings have renewed interested in the exploration 
of UHP rocks.  Occurrences of UHP minerals and rocks in both 
ophiolitic and granulite terranes should lead to another research 
renaissance involving the integrated efforts of geophysicists, 
geochemists, mineral physicists, and geologists over the next 
decades. The goal of our review is to summarize recent findings 
of the petrochemical, mineralogic and geochronologic studies on 
Dabie-Sulu UHP rocks—the largest and perhaps best understood 
UHP belt—and to discuss some still controversial issues.

Dabie-Sulu UHP rocks and minerals
Figure 2 shows the Triassic Dabie-Sulu UHP collisional 

terrane situated between the Sino-Korean and Yangtze cratons. 
This belt has benefited from intensive multidisciplinary investi-
gations in terms of manpower and resources, including the first 
CCSD 5 km bore-hole project, which was completed in 2005. 
Blocks, boudins, and layers of eclogite and garnet peridotite 
occur as enclaves in UHP gneisses. Rare but widely dispersed 
occurrences of coesite inclusions in zircon grains from felsic 
gneisses, marbles, quartzites, and eclogites from both surface 
and core samples indicate that the supracrustal rocks (>90% 
felsic gneisses, <10% mafic eclogites) were subducted to depths 
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Eclogites
Eclogitic rocks are widespread as mafic lenses, blocks and 

layers in gneiss (type A), peridotite (type B), and marble (type 
C). The CCSD 5 km main bore-hole revealed a total cumulate 
thickness of eclogite of about 1600 m (Zhang et al. 2006). Type A 
eclogites are the most abundant (>90%) and contain inclusions 
of both coesite and its pseudomorphs in Grt, Omp, Ky, Zo, Ep, 
and even in dolomite (e.g., Schertl and Okay 1994; Zhang and 
Liou 1994a, 1996; Zhang et al. 1995a, 2009b). Type B eclogites 
consist mainly of Grt + Omp + Rt with rare inclusions of Coe/
Qtz (Zhang et al. 2009a). Type C eclogites are characterized by 
the presence of magnesite and dolomite. Zircon separates from 
most eclogites, except Type B specimens contain rare but wide-
spread coesite inclusions. Phengite, zoisite/epidote are the most 
abundant hydrous phases in eclogite; talc, lawsonite, OH-rich 
topaz, and sodic amphibole (including nyboite and glaucophane), 
as “peak” or eclogite-facies phases are present in some unusual 
UHP rocks, such as: (1) talc-bearing eclogite (Liou and Zhang 
1995; Zhang et al. 1995a, 1995b); (2) nyboite-bearing eclogite 
(Hirajima et al. 1992); (3) glaucophane-bearing Ky eclogite 
(Zhang and Liou 1994; Wei et al. 2010); (4) lawsonite-bearing 
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FiguRe 2. (a) A sketch map of general geology in the Dabie-Sulu 
orogen of central-east China: NCB and SCB in the insert denote the 
North China Block (a part of the Sino-Korean craton) and South China 
Block [modified from Fig. 1 of Zhang and Liou (1994)]; (b) Tectonic 
model for Triassic subduction of the Yangtze beneath the Sino-Korea 
cratons showing the tectonic setting for mantle-derived (Type A) and 
crustal hosted (Type B) garnet peridotite [modified from Fig. 2 of Zhang 
et al. (1998)]. 

FiguRe 3. Photomicrographs of coesite or coesite pseudomorphs in 
Dabie-Sulu UHP rocks: (a) coesite inclusion in garnet from the Weihai 
eclogite (Zhang et al. 1995c); (b) intergranular coesite from Yangkuo 
eclogite (Zhang and Liou 1996); (c) coesite inclusion in kyanite from 
the Donghai Ky-quartzite (Zhang et al. 2002a); (d) coesite inclusion 
in dolomite from a Dabie eclogite (Zhang and Liou 1996); (e) coesite 
pseudomorph in epidote (Zhang et al. 1995a); and (f) inclusion of 
coesite + palisade quartz in omphacite from a Dabie eclogite (Liou and 
Zhang 1998). (a–b) Plane-polarized light (PPL), (c–f) cross-polarized 
light (XPL). 

>100 km (e.g., Liu and Liou 2011). Drill-core samples show that 
the Sulu UHP slab is >5 km thick, and geologic cross sections 
suggest that the Dabie slab is at least 10 km thick (Hacker et 
al. 2000); the Dabie-Sulu UHP terrane extends for >2000 km, 
is about 50 km wide, and represents the geographically largest 
UHP metamorphic belt (>30000 km2) in the world. Characteristic 
features of common and unusual Dabie-Sulu UHP minerals were 
summarized by Liou et al. (1998). This complex is famous for the 
widespread occurrences of coesite inclusions in Grt, Omp, and 
Ky from various supracrustal rocks; the Dabie-Sulu terrane is also 
unique in its occurrences of intergranular coesite, coesite inclu-
sions in dolomite and in epidote/zoisite, UHP OH-rich topaz, and 
talc (Zhang and Liou 1996; Zhang et al. 1995a, 1995b, 2002a). 
Garnet peridotites and many other mineralogic, petrologic, and 
geochemical features were summarized in previous reviews 
(Liou et al. 1998, 2009; Zhang et al. 1994, 2000, 2009b) (also 
see several photomicrographic examples in Fig. 3). The most 
common UHP rocks are described below.



LIOU ET AL.: THE DABIE-SULU UHP METAMORPHIC TERRANE OF EAST-CENTRAL CHINA1536

eclogite (Li et al. 2004); (5) OH-rich topaz-bearing Ky-rich 
quartzite (Zhang et al. 2002a); (6) corundum-bearing eclogite 
and garnetite (e.g., Zhang et al. 2004); and (7) whiteschist (Rolfo 
et al. 2000).

Dabie-Sulu eclogites show a significant range in bulk compo-
sition, suggesting that they probably were derived from hetero-
geneous mantle and crustal sources (Jahn et al. 2003). Banded/
layered structures reflect distinct compositional variations, in 
turn caused by magmatic and/or metamorphic differentiation, as 
well as due to possible modification of bulk-rock composition 
before, during, and after UHP metamorphism. Furthermore, most 
type A eclogites have low MgO and CaO contents in comparison 
with the other two types of eclogite; they are enriched in LREE 
related to HREE, and show negative anomalies in Nb, Zr, and 
Ti in spidergrams, except for Rt-rich eclogite from the CCSD 
main hole. These features indicate a continental basalt affinity 
for most type A eclogites. Type B eclogites are characterized 
by higher MgO (most >10 wt%) and variable REE patterns 
(Zhang et al. 2000, 2005, 2009b) as well as negative εNd(t) (–5 
to –7) (Jahn 1998), and may represent Proterozoic intrusives of 
asthenosphere-derived melts, long-term enriched mantle segrega-
tions, or were subjected to crust contamination. A few “eclogites” 
(or garnet clinopyroxenites) within a meta-lherzolite body in the 
North Dabie have basaltic protoliths with MORB and E-MORB 
affinities; they may have been subjected to multistage metaso-
matism related to the influx of Si-depleted, Mg-enriched fluids 
produced during serpentinization of the host lherzolite prior to 
subduction (Malaspina et al. 2006; Zhang et al. 2011a). Type C 
eclogites are rich in CaO (>15 wt%), suggesting contamination 
by country rock marble (Zhang and Liou 1998b), or possibly due 
to metasomatism (Jahn 1998; Wu et al. 2006).

Garnet peridotites
Garnet peridotites are widespread as a minor but tectonically 

significant component of the Dabie-Sulu UHP terrane (Liou et 
al. 2007; Zhang et al. 1994, 2000). Dabie-Sulu garnet peridotites 
consist of garnet lherzolite, harzburgite ± minor wehrlite, and 
dunite occurring as blocks or lenses from meter to kilometer 
size in quartzofeldspathic gneisses and as lenses or layer in me-
tabasaltic eclogites. They are classified as mantle-derived (type 
A) and crust-hosted (type B), based on structural, geochemical 
and isotopic characteristics. Type B igneous intrusions occur as 
minor ultramafic cumulates associated with dominant metagab-
broic layers of various compositions, whereas Type A peridotites 
represent depleted, metasomatized mantle fragments, some of 
which contain minor eclogite and/or garnet clinopyroxenite pods.

Most Sulu peridotites are mantle-derived type A peridotites, 
and consist of Ol, En, Di, Grt ± Mgs, Phl, and Ti-clinohumite 
(Zhang et al. 2000). Type A peridotitic minerals have mantle δ18O 
isotopic values of 4.5 to 6.5‰ (Zhang et al. 1998, 2000, 2007; 
Zhang Z. et al. 2005; Zhao et al. 2007). Major elements of Grt 
peridotites show a wide bulk compositional range, possibly re-
sulting from complex processes including metasomatism and/or 
crustal contamination (Zhang et al. 1994, 2000, 2007; Yang and 
Jahn 2000; Malaspina et al. 2009; Zhang et al. 2011a). This sug-
gestion is supported by several petrologic facts: (1) occurrences 
of hydrous and carbonate phases (phlogopite, Ti-clinohumite, and 
magnesite); (2) very high K2O (up to 3.4 wt%) and/or FeO (>10 
wt%) contents, high 87Sr/86Sr (0.7081–0.7100) values, and low 

143Nd/144Nd (0.5123–0.5124) ratios; and (3) LREE-enriched and 
HFSE-depleted distribution patterns. Petrochemical and stable 
isotopic investigations have shown that Phl- and Mgs-bearing 
peridotites were subjected to multiple stages of metasomatism 
(Zhang et al. 2007, 2008, 2009a; Malaspina et al. 2009; Zhang 
et al. 2011). Microtextures of peridotitic minerals (Zhang et al. 
1999) such as clinoenstatite lamellae in orthoenstatite (Zhang 
et al. 2002b), coarse-grained clinopyroxenes with 25 vol% 
exsolved garnet and 4 vol% ilmenite (Zhang and Liou 2003), 
and exsolved needles of pyroxene, rutile, and apatite along 
garnet (111) planes suggest the former occurrence of majoritic 
garnets, implying great mantle depths (Ye et al. 2000; Zhang 
and Liou 2003; see Hwang et al. 2011 for an alternative view). 
The UHP clinoenstatite and majoritic garnet may have formed 
in the mantle wedge before tectonic insertion into the downgo-
ing continental lithospheric plate, and then were recrystallized 
during subduction-zone metamorphism.

Country rocks

Dabie-Sulu eclogites and garnet peridotites are enclosed 
within various country rocks including granitic gneiss, parag-
neiss, marble, pelite, and quartzite. Gneisses are most abundant; 
for example, in the recovered continuous 5 km CCSD main hole 
cores, the cumulative thickness of orthogneiss layers is about 
2428 m, making up 47% of the core total. Orthogneiss consists 
of the amphibolite-facies assemblage Ksp + Pl + Qtz ± minor 
epidote, biotite, amphibole, garnet, phengite, and magnetite. As 
described below, almost all zircon separates from both surface 
and core gneiss samples contain minute coesite inclusions, sug-
gesting these country rocks all were subjected to in situ UHP 
metamorphism (for review, see Liu and Liou 2011). Some gra-
nitic orthogneisses are interpreted as differentiation products of 
basaltic magma (e.g., Zhang Z. et al. 2006).

On the other hand, the paragneisses are compositionally and 
texturally much more heterogeneous. Relatively pure marble 
consists mainly of dolomite and calcite ± minor magnesite; 
impure layers contain minor diopside, tremolite, phlogopite, 
epidote, allanite, amphibole, garnet, rutile, and magnetite. Marble 
is ubiquitous as stratigraphically continuous units or as blocks 
in gneisses; carbonate lenses range from 20 to 500 m in length, 
and are about 10–200 m thick, have poorly exposed contacts 
with adjacent gneissic rocks and contain centimeter to meter 
sized eclogite blocks. Primary compositional layers with distinct 
color bands are preserved.

Zircon, the best mineral for reconstructing the P-T-time 
path

Inasmuch as mineralogical and geochemical tracers of 
metamorphism are almost completely obliterated in matrix 
assemblages of UHP rocks, reflecting retrogression during ex-
humation, unreactive zircon most faithfully preserves the record 
of the complex evolutionary history. The internal structures of 
zircon grains from various Sulu-Dabie UHP rocks revealed by 
cathodoluminescence (CL) imaging display distinct zonations 
that comprise an inherited (magmatic or detrital) core, prograde 
and peak (UHP) annuli, and in many cases, an outermost ret-
rograde rim domain. Each zone contains distinctive but minute 
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mineral inclusion assemblages that have been identified by laser 
Raman spectroscopy and/or electron microprobe analyses. The 
inherited cores contain low-P, protolithic mineral inclusions 
(Qtz, Pl), prograde domains preserve Qtz eclogite-facies inclu-
sion assemblages, UHP domains carry coesite eclogite-facies 
inclusion assemblages, and the outmost retrograde rims exhibit 
amphibolite-facies inclusion assemblages (see Liu and Liou 2011 
for summary and references, and Fig. 4 for a few examples).

Numerous sensitive high-resolution ion microprobe 
(SHRIMP) and inductively coupled plasma mass spectrometry 
(ICP-MS) U-Pb and Lu-Hf analyses of zircon separates from 
Dabie-Sulu UHP rocks combined with mineral parageneses and 
compositions of inclusion phases preserved in the different zircon 
domains have been used to constrain the metamorphic history 
of recrystallization. Examples of simplified P-T-time paths are 
summarized in Figure 5. In favorable cases, four discrete episodes 
of pre-subduction protolith, prograde, UHP and retrograde stages 
can be delineated: (1) Neoproterozoic protolith ages (800–750 
Ma); (2) 246–244 Ma early-stage Qtz eclogite-facies prograde 
metamorphism; (3) 240–220 Ma UHP metamorphism; and (4) 
215–205 Ma amphibolite-facies decompression/retrogression. 
Neoproterozoic supracrustal rocks together with minor mafic-
ultramafic rocks of the Yangtze craton were subjected to a pro-
grade subduction-zone metamorphism at 570–690 °C and 1.7–2.1 
GPa, then UHP metamorphism at 750–850 °C and 3.4–4.0 GPa, 
followed by decompression to amphibolite-facies retrograde 
metamorphism at 550–650 °C and 0.7–1.05 GPa. The estimated 
subduction and exhumation rates for the Sulu-Dabie UHP ter-
rane are up to 5–9 and 5–11 km/Myr, respectively. Evidently, the 
subduction zone is a “two-way street” with exhumation velocities 

comparable to rates of lithospheric underflow.
Fluid is an essential phase for element transport, nucleation, 

and growth of metamorphic zircon, and its role in the crystalliza-
tion of Dabie-Sulu zircon grains has been detailed by Zheng et 
al. (2003, 2011). At Yangkou Beach, South Sulu, both gabbroic 
minerals and textures (Zhang and Liou 1997) and intergranular 
coesite (Fig. 3) (Liou and Zhang 1996) coexist in a 10 m long, 
very dry eclogite block. In this nearly anhydrous metabasaltic 
system, zircon grains are fine grained, showing limited metamor-
phic growth, thus retain Neoproterozoic U-Pb ages and isotopic 
compositions (Zheng et al. 2004). Majoritic garnet inferred from 
some exsolution lamellae of Cpx, Opx, ilmenite, and apatite in 
garnet (Ye et al. 2000) has also been reported from the Yangkou 
Beach eclogite.

Most ultramafic rocks contain extremely low-Zr contents. 
However, rare zircon crystals have been found in a few Sulu 
metasomatized garnet peridotites and/or the enclosing eclogites 
(Fig. 4). These zircon crystals are metamorphic in origin, show-
ing rounded isometric forms without inherited cores, and yield 
SHRIMP U-Pb ages of 220–240 Ma, consistent with UHP ages 
of 230 ± 10 Ma for the country rocks described above (Zhang et 
al. 2005; Zhao R. et al. 2006, 2007; Zhang Z. et al. 2006, 2011b).

Oxygen- and hydrogen isotope characteristics and nature 
of the UHP fluids

Stable isotopic characteristics of the Dabie-Sulu UHP rocks 
have been extensively investigated (for reviews, see Rumble et 
al. 2002; Zheng et al. 2003; Zheng 2009 and references therein) 
since the first finding of anomalously low-δ18O values in garnet, 
omphacite (–10‰) and quartz (–7‰) from Sulu coesite-bearing 

FiguRe 4. Examples of plain light (PPL) and CL images of zoned zircons with mineral inclusions from Sulu UHP rocks: (a–b) eclogite; (e–f) 
orthogneiss, (g–h) paragneiss, (i–j) marble, (k–l) quartzite (from Liu and Liou 2011), (b) back-scatter image of zircon from metasomatic garnet 
peridotite with inclusion of Ti-clinohumite (from Zhang et al. 2005), and metamorphic zircon from eclogite block enclosing within garnet peridotite 
(from Zhao et al. 2007). SHRIMP ages are also shown.
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eclogites (Yui et al. 1995; Zheng et al. 1996). These are much 
lower values than those in previously reported metamorphic 
minerals worldwide. The low values have been attributed to in-
tensive hydrothermal alteration of the Late Proterozoic protoliths, 
followed by limited fluid interactions during subduction and ex-
humation of the UHP rocks. Two examples are illustrated below:

Figure 6 shows petrologic and oxygen isotopic profiles of 
the 5 km CCSD main-hole cores (after Zhang Z. et al. 2006). 
Several features are apparent. (1) Depleted negative δ18O val-
ues of UHP rocks occur at depths to 3200 m, whereas deeper 
samples exhibit normal δ18O values. A depth of 3200 m may be 
considered as the minimum depth range of Neoproterozoic oxida-
tion. (2) In the depleted zone, UHP rocks with low-δ18O values 
are restricted mainly to contacts between the various eclogite, 
orthogneiss, and paragneiss layers. Such zones may once have 
been the main lithologic boundaries between the igneous and 
sedimentary country rocks, and provided fluid channels for 
intensive hydrothermal alteration. Several U-Pb dates of the 
protoliths yield age ranges between 700 to 800 Ma (e.g., Zhang 
Z. et al. 2009). (3) Continuous spatial variations of depleted to 
normal δ18O rocks, regardless of their lithology, suggest that the 
protoliths underwent water-rock interactions before subduction, 
and that these rocks constituted a structurally coherent terrane 
during Triassic subduction and exhumation. (4) A preserved de-
pleted zone of 3.2 km together with the widespread distribution 
of low-δ18O rocks exposed over a surface area exceeding 15000 
km2 (e.g., Zheng et al. 2003, 2011; Zhang Z. et al. 2008, 2011b) 
indicates that a huge quantity of continental crust (>46000 km3) 
interacted with cold meteoric water, suggesting correlation with 
the Neoproterozoic global “Snowball Earth” event.

Figure 7 is an δ18O vs. δD diagram for some analyzed hy-
drous phases from Dabie-Sulu UHP rocks together with standard 
values for seawater, magmatic waters, meteoric waters, and 
crustal metamorphic rocks. Recently analyzed Iceland epidotes 
and fluids from geothermal wells on the landward extension of 
the Mid-Atlantic Ridge by Pope et al. (2009) are also plotted for 
comparison. Hydrous minerals from Sulu eclogites and quartz 

schists exhibit limited δD ranges of –127 to –83‰ for phengite, 
–81 to –93‰ for amphibole, and –66 to –49‰ for zoisite, despite 
large variations in δ18O values (–9.1 to +5.1‰ for phengite and 
–10.7 to –2.9 ‰ for zoisite). Those from the Dabie eclogites and 
paragneisses have δD values of –109 to 61‰ for micas, –100 
to –72‰ for amphiboles, and –75 to –37‰ for epidote/zoisite 
(Zheng et al. 2009). The δD values of Dabie UHP phengites are 
considerably higher than those from Sulu, probably due to dif-
ferent extents of Neoproterozoic water-rock interactions (e.g., 
Fig. 8). The nearly identical isotopic values between the Iceland 
geothermal epidotes and the Sulu-Dabie hydrous phases support 
the suggestion of Neoproterozoic fluid-rock interactions under 
“Snowball Earth” conditions. A schematic model showing rift-
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magmatism, various extents of interactions with cold meteoric 
waters, and possible oxidation of crustal rocks along the northern 
margin of the Yangtze craton is illustrated in Figure 8, modified 
after Zheng et al. (2003).

The oxygen isotopic results described above indicate that 
aqueous fluid circulation during Triassic deep subduction and 
early exhumation stages was limited, and was characterized 
by local, channelized fluid-rock interactions; most UHP rocks 
were internally buffered, so preserved their protolith isotopic 
signatures. However, infiltration by external fluids may have 
occurred during exhumation and caused local partial melting 
of some UHP rocks and formation of late retrograde phases and 
greenschist-facies veins (e.g., Zong et al. 2010; Zheng et al. 
2011; Gao et al. 2012).

In short, during the prolonged metamorphic evolution of 
Dabie-Sulu UHP rocks, fluid-rock interactions occurred at vari-
ous stages. The nature of the fluids has been documented through 
numerous studies of fluid inclusions in prograde and retrograde 
phases (e.g., for summary see Zhang Z. et al. 2011b and refer-
ences). Seven stages of fluid-rock interactions of the Sulu UHP 
rocks were recently outlined by Zhang Z. et al. (2011b). (1) Initial 
intense hydrothermal alteration of bimodal magmatic rocks and 
their country rocks by meteoric waters of extremely low-δ18O 
compositions occurred during Snowball Earth time attending the 
breakup of Rodinia. (2) Progressive dehydrations and prograde 
metamorphism of supracrustal rocks at shallow subduction 
depths from the zeolite-, blueschist-, through epidote–amphibo-
lite- to eclogite-facies conditions occurred attending the Triassic 
subduction. A series of dehydration reactions resulted in the 
formation of H2O and CO2-H2O fluids of relatively low salinity. 
(3) Such processes continued to mantle depths; minor amounts 
of fluid were incorporated into a few UHP volatile-bearing 
minerals, including phengite, epidote/zoisite, glaucophane, talc, 
magnesite, and lawsonite, and into nominally anhydrous miner-
als (NAMs) such as garnet, omphacite, and rutile. Inasmuch as 
H2O was stored in these host minerals, the concentrations of 
other components and salinities in the CO2–H2O fluid phase 
increased. (4) During fluid-rock interactions at the peak-stage 

of UHP metamorphism, minor amounts of silicate-rich super-
critical fluid were generated and normally immobile elements 
may have been mobilized. (5) Rehydration during exhumation 
from mantle to crustal depths resulted in extensive exsolution of 
structural water from UHP NAMs as well as the dehydration of 
lawsonite. The resulting fluid probably released large quantity 
of dissolved elements to form epidote, sodic amphibole, and HP 
vein minerals, and caused local partial melting (e.g., Zong et al. 
2010; Gao et al. 2012; Zheng et al. 2011). (6) During late-stage 
retrogression at mid-crustal depths, dehydration of phengite 
and sodic amphibole and the minor addition of an external fluid 
resulted in pervasive amphibolite-facies recrystallization. (7) 
The final stage greenschist-facies retrogression was associated 
with channelized fluid infiltration at shallow crustal depths along 
ductile shear zones and resulted in the formation of numerous 
low-P quartz veins.

Long duration of UHP and retrograde metamorphism
Numerous geochronological data for Sulu-Dabie felsic, 

mafic, and ultramafic rocks are summarized in Figure 5c. (1) 
U-Pb zircon studies have yielded Triassic ages (245–205 Ma) 
from various Sulu gneisses and eclogites (see summary in Liu 
and Liou 2011). This 245–205 Ma interval is also consistent with 
earlier studies that produced Sm-Nd isochron ages (228–209 Ma) 
for Dabie eclogite and Grt clinopyroxenite (221–236 Ma) by Jahn 
et al. (2003). (2) Zircon rims that contain low-P inclusions such 
as Qtz and Ab from gneisses yield Late Triassic ages (213–208 
Ma) (Liu F. et al. 2001, 2004, 2005, 2008, 2010), representing 
the amphibolite-facies retrograde event. SHRIMP U-Pb ages of 
rare Sulu garnet peridotites and their included eclogites range 
from 238 to 218 Ma (Li et al. 2008; Zhang et al. 2005, 2009b; 
Zhao R. et al. 2006; Zhang Z. et al. 2006, 2011a); these ages 
lie within the UHP metamorphic age range (240–220 Ma) for 
Dabie-Sulu gneisses and eclogites. Such consistent ages from 
mafic-ultramafic rocks and country rock gneisses demonstrate 
that the entire section was subjected to coeval UHP-HP meta-
morphism over an interval of 10–20 Myr.

A large age range exists in samples from different areas and 
even in adjacent samples from the same region, resulting from 
several factors. (1) An insufficient number of spot analyses may 
result in a bias when calculating weighted mean ages of mafic-
ultramafic rocks. (2) Absence of inclusions in most zircon grains 
makes it difficult to pin down the metamorphic conditions for 
each zircon growth zone. (3) Zircon grains may have recrystal-
lized under different P-T conditions in the subduction zone, and 
their inclusions only reflect the latest P-T conditions that reset 
the U-Pb system. (4) Zircon grains may have grown at different 
times during protracted residence times of these mafic-ultramafic 
bodies at UHP-HP conditions. The close proximity and similar 
petrological-geochemical characteristics of analyzed mafic-
ultramafic rocks exclude the possibility that they record different 
metamorphic events, and were later juxtaposed against one to 
another. Instead, the mafic-ultramafic rocks underwent prolonged 
HP-UHP metamorphism between 240 to 220 Ma, similar to the 
UHP recrystallization intervals determined for the country rock 
gneisses and in situ eclogites.

As noted above, evidence for 15–20 Myr duration under 
UHP-HP conditions (Fig. 5c) has been suggested by a growing 
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resulted in melting and infiltration of glacier ice and triggered extensive 
fluid-rock interactions [modified after Zhang Z. et al. (2011b)].
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number of U-Pb, Sm-Nd, and Rb-Sr ages from Dabie-Sulu UHP 
rocks (e.g., Hacker et al. 1998, 2006; Wu et al. 2006; Zheng 2009; 
Brouwer et al. 2011). One possible explanation for such a long 
interval is the episodic growth of zoned zircon grains during 
prograde and retrograde stages at UHP conditions in the presence 
of an aqueous fluid. However, UHP zircon domains show marked 
contrasts in terms of CL patterns, U and Th contents, Th/U ratios, 
abundance of mineral inclusions, and compositions of omphacite 
inclusions. The linking of zircon growth to specific metamorphic 
conditions is not an easy task, and the recrystallization of UHP 
rocks from prograde, peak, and retrograde stages could pass 
through the coesite stability field for a considerable length of 
time. Unless the specific P-T conditions for each stage can be 
determined, the extent to which any of these ages represent pro-
grade, peak and retrograde UHP stages of zircon growth remains 
somewhat uncertain (e.g., O’Brien 2006; Schmidt et al. 2008).

Alternatively, the large age range of SHRIMP ages for Sulu 
UHP rocks may instead imply the juxtaposition of several UHP 
slices during exhumation from mantle to crustal depths. In fact, 
a successive subduction-exhumation model has been used to 
explain a ~30 Myr long diachronous exhumation of HP-UHP 
rocks in the western Dabie terrane (Liu X. et al. 2004). Individual 
slices of the subducting Yangtze slab have been exhumed from 
different depths and the successive descent of underlying slices 
was accompanied by nearly concomitant uplift of some of the 
overlying slices.

diScuSSion

SHRIMP U-Pb zircon ages and P-T-time paths
Since the discovery of coesite and microdiamond, respec-

tively, in 1984 and 1990, studies of UHP rocks have defined a 
new frontier in the Earth sciences (Chopin 1984; Smith 1984; 
Sobolev and Shatsky 1990). A central issue for UHP terranes 
involves study of the nucleation and growth of zircon, because 
it seems to be the best container for preserving UHP minerals 
and represents the best time recorder for the protolith, prograde, 
UHP, and retrograde stages. The sources of Zr, Si, and REE 
components as well as the roles of fluid transport during various 
stages of metamorphism for subsolidus zircon growth domains 
need to be documented by kinetic modeling and documenta-
tion of the characteristics of fluid inclusions in the different 
ZrSiO4 zones. Moreover, the precise P-T conditions for its 
growth, particularly those dating spots by ion microprobe have 
been extremely difficult to determine. Evidence linking zircon 
growth to specific metamorphic conditions is lacking, and the 
extent to which any of the ages represent UHP conditions or 
distinct phases of zircon growth remains somewhat uncertain. 
The Ti-in-zircon geothermometer (e.g., Watson and Harrison 
2005; Fu et al. 2008) using an ion-probe in conjunction with 
spot age analysis should be applied to provide better tempera-
ture-time constraints. However, a recent study by Timms et al. 
(2011) indicates that chemical exchange between zircon and 
the surrounding matrix can occur; accordingly, Ti-in-zircon 
thermometry and U-Pb geochronology from deformed zircon 
grains may not yield exact information relating to the P-T condi-
tions and timing of zircon crystallization. Timms et al. (2011) 
suggested that open behavior of the Ti-Th-U system occurred 

shortly after zircon growth, but prior to the accumulation of 
significant radiogenic lead.

Furthermore, linking inclusions in zircon in UHP rocks 
with the age of growth and/or breakdown of major minerals 
such as garnet, pyroxene, or phengite is not straightforward. 
Inclusions identified by optical microscopy and confirmed by 
micro-Raman typically lie in the interior of the zircon grains 
and do not appear on the polished surface. This means that the 
relationship between CL-defined growth zones, REE patterns 
of these zones, SHRIMP ages, and the positions of the UHP 
indicator phases in some cases is unclear.

As stated above, most previous geochronologic constraints 
on metamorphic evolution of the Dabie-Sulu UHP rocks have 
relied on measured U-Pb ages of various zircon domains; 
compilation of these ages shown in Figure 5c led to sugges-
tions of long durations for both subduction and exhumation 
(e.g., Liou et al. 2009; Kylander et al. 2012). This approach 
has been critically evaluated using new garnet Lu-Hf ages of 
223–215 Ma for the CCSD main hole eclogites by Schmidt et 
al. (2008, 2011); this interval lies between the prograde HP 
eclogite-facies recrystallization and the amphibolite-facies 
retrogression. According to Schmidt et al. (2011), improved 
garnet Lu-Hf data provide better age constraints for HP and 
UHP rocks, reflecting the preservation of Lu growth zoning in 
metamorphic garnet, even in cases where major elements in the 
same grain appear to have been homogenized; thus, the garnet 
Lu-Hf ages apparently are extremely robust, and resist resetting 
by diffusive loss along the cooling path. Schmidt et al. (2011) 
urge combining the results from zircon U-Pb and garnet Lu-Hf 
ages to more accurately constrain the metamorphic evolution 
of the Dabie-Sulu UHP rocks.

Fluids and the growth of zircon domains
The presence of fluid is essential for at least episodic growth 

of zircon grains. Primary fluid inclusions together with coesite 
mineral inclusions were identified in the same zircon domains 
from some CCSD main hole eclogite, paragneiss, and orthog-
neiss core samples (e.g., Liu and Xu 2004). SHRIMP U-Pb dat-
ing of these coesite-bearing zones indicates that both fluid and 
coesite were trapped during the UHP metamorphism. However, 
surviving coesite and fluid are present as discrete single-phase 
inclusions; coesite would be totally transformed to quartz in the 
presence of minor aqueous fluid during decompression, reflect-
ing rapid H2O-induced back reaction (Mosenfelder et al. 2005). 
Fluid inclusion studies need to be pursued to characterize the 
temporal and spatial resolutions of such micro- to nano-size 
inclusions in zircon grains because the results would provide 
important information on the compositions and geochemical 
evolution of metamorphic fluids and fluid-rock interactions 
(e.g., Zheng et al. 2011).

Oxygen isotope analyses of zircon grains from Dabie-Sulu 
eclogites and their country rocks indicate that ~50% of the 
separated zircon grains have substantially negative δ18O val-
ues. Ion-probe micro-spot oxygen isotopic data of 3–4 distinct 
domains of Dabie-Sulu zircon separates should be undertaken. 
These data could be used to differentiate the characteristics of 
fluids in various stages and to assess the rate of oxygen isotopic 
diffusion (Valley and Kita 2009).
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Lack of microdiamonds in Dabie-Sulu UHP rocks
Comprehensive investigations of zircon separates from more 

than 2000 diamond-grade UHP rocks of the Kokchetav Massif 
have been reported (for review, see Katayama and Maruyama 
2009); microdiamond inclusions are widespread in zircon UHP 
domains, whereas graphite occurs both as cores and rims of 
the microdiamond inclusions and as inclusions in retrograde 
zircon domains. Inclusions of microdiamond in Dabie eclogitic 
garnets have been reported (Xu et al. 1992, 2005; Okay 1993). 
However, an extensive search of more than 50000 zircon grains 
from 3000 Dabie-Sulu UHP outcrop and drill core rock samples 
by different investigators have failed to reveal the occurrence 
of any microdiamond inclusions. The absence of microdiamond 
and paucity of graphite from Dabie-Sulu UHP rocks probably 
reflects the presence of relatively oxidized protoliths, in turn, 
resulting from extensive meteoric water-rock interactions during 
Snowball Earth time as described above.

concluding ReMARkS

A steady stream of new UHP mineral occurrences has been 
reported from continental basement rocks such as exposed in 
Bohemia and in mafic-ultramafic ophiolite terranes. During the 
last three decades, efforts have focused on the characterization 
of UHP rocks through mineralogic, petrologic geochemical, and 
geochronologic studies. Zircon is now recognized as the best 
container recording the P-T-time path of UHP rocks. Fortunately, 
it occurs at least sparsely in nearly all UHP rocks, including some 
ultramafics. Many new micrometer-size inclusions, including flu-
ids and nano-phases have been identified. Subduction depths of 
supracrustal rocks are now recognized to extend from the coesite 
through the diamond P-T stability at ~150 km, and perhaps to the 
fields of majoritic garnet and stishovite as deep as 300–350 km. 
With new analytical tools characterized by high spatial, tempo-
ral, and energy resolutions, we anticipate additional petrologic, 
geochemical, and isotopic surprises. Integrated approaches for 
isotopic systems including Hf-Lu dating and tracers, and for 
nano-phase characterization need to be pursued. New findings, 
combined with precise field, mineralogic, and petrologic data 
will surely extend our interpretations of geotectonic models and 
the controlling mantle dynamics.

This review has undoubtedly overlooked many important 
UHP contributions inasmuch as more than dozen relevant papers 
and special issues appear each month in regional and international 
journals. We apologize for this, but hope that our review will 
spur additional research on the exciting, evolving topic of UHP 
metamorphism and continental subduction.
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