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Abstract

The isothermal bulk modulus, together with its temperature dependence, and the thermal expan-
sion of diamond at various pressures were calculated from first principles in the [0, 30 GPa] and [0, 
3000 K] pressure and temperature ranges, within the limits of the quasi-harmonic approximation 
(QHA). The hybrid HF/DFT functional employed (WC1LYP) proved to be particularly effective in 
providing a very close agreement between the calculated and the available experimental data. In par-
ticular, the bulk modulus at 300 K was estimated to be 444.6 GPa (Kʹ = 3.60); at the same temperature, 
the (volume) thermal expansion coefficient was 3.19×10-6 K-1. To the authors’ knowledge, among the 
theoretical papers devoted to the subject, the present one provides the most accurate thermo-elastic 
data in high-pressure and temperature ranges. Such data can confidently be used in the determination 
of the pressure of formation using the “elastic method” for minerals found as inclusions in diamonds 
(recently applied on different minerals included in diamonds), thus shedding light upon the genesis of 
diamonds in the Earth’s upper mantle.
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Introduction

This work is part of a wider project devoted to the study 
of diamond formation in the upper mantle and its growth 
relationships with those minerals that are commonly found as 
inclusions in diamonds. In particular, subcratonic diamonds 
can contain inclusions of other minerals like olivine, garnet, 
spinel, pyroxenes, and sulfides (Nestola et al. 2011; Shirey et 
al. 2013). Diamonds and their inclusions are among the deep-
est materials originating from the Earth’s interior and reaching 
the planet surface. Their study plays a key role in understand-
ing and interpreting the geodynamics, geophysics, petrology, 
geochemistry, and mineralogy of the Earth’s mantle (Stachel 
and Harris 2008, and references therein). By the study of such 
inclusions, in situ, by means of diffrattometric or spectroscopic 
techniques, it is possible to determine the pressure (and the 
corresponding depth in the Earth’s mantle) at which the inclu-
sions were formed (Nestola et al. 2011; Izraeli et al. 1999) 
using the so-called “elastic method” (see Shirey et al. 2013 for 
a review). However, to this end, very accurate data concerning 
the pressure-volume equation of state, the thermal expansion 
and the bulk modulus temperature dependence of both diamond 
and its inclusions are absolutely crucial to obtain low error in 
the pressure of formation. 

As concerns diamond, previous experimental and theo-
retical determinations of the elastic parameters and thermal 

expansion existed. In particular, from the experimental side, 
the elastic constant measurements from Brillouin scattering, 
at room or higher temperatures, allowed the estimation of the 
bulk modulus and its temperature dependence (Grimsditch and 
Ramdas 1975; McSkimin and Andreatch 1972; Vogelgesang et 
al. 1996; Zouboulis et al. 1998). Experimental thermal expan-
sion data (from low to high temperature up to 3000 K) at room 
pressure are available from Stoupin and Shvyd’ko (2011) and 
from Reeber and Wang (1996). Due to technical difficulties in 
the experimental determinations of accurate bulk moduli and 
thermal expansion at simultaneous high pressure and tempera-
ture, a number of theoretical works were devoted to the subject, 
both at the ab initio level (Hebbache 1999; Kunc et al. 2003; 
Ivanova and Mavrin 2013; Maezono et al. 2007; Mounet and 
Marzari 2005; Valdez et al. 2012; Xie et al. 1999; Zhi-Jian et 
al. 2009) or the empirical one (force fields and other techniques 
based on some specific models; Aguado and Baonza 2006; 
Gao et al. 2006). Strongly depending upon the specific method 
employed, the calculated bulk moduli could be overestimated 
or underestimated by more than 10 GPa with respect to the 
experimental datum at 300 K, so that a more reliable ab initio 
methodology is required to get values that could parallel the 
experimental techniques in accuracy and under very extreme 
conditions of P and T. To this end, the equation of state and 
the thermal expansion of diamond in the [0, 3000 K] and [0, 
30 GPa] temperature and pressure ranges, respectively, have 
been determined by using the most recent ab initio techniques 
so far developed. In particular, an hybrid Hartree-Fock/density 
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functional theory (HF/DFT) functional has been employed. 
Hybrid functionals assure a very high accuracy in reproducing 
thermo-elastic parameters and vibrational properties of crystals, 
as it has already been proven in several papers (see for instance: 
De La Pierre et al. 2011; Prencipe 2012a; Prencipe et al. 2011, 
2012; Ungureanu et al. 2012; Zucchini et al. 2012; Scanavino et 
al. 2012; Scanavino and Prencipe 2013, and references therein).

Computational details

Geometry optimization (cell parameter at the equilibrium), 
energy calculations at the static limit (no zero point and thermal 
energies) and vibrational frequencies calculations, for a set of 
different unit-cell volumes, were performed by means of the 
CRYSTAL09 program (Dovesi et al. 2005, 2009). The chosen 
functional (WC1LYP) is a hybrid HF/DFT one, based on the WC 
(GGA) exchange functional proposed by Wu and Cohen (2006), 
mixed with 16% of the exact non-local Hartree-Fock exchange, 
and employing the LYP correlation functional (Lee et al. 1988). 
Such percentage of exact Hartree-Fock exchange is essential for 
the correct reproduction of the elastic and vibrational proper-
ties of crystals, as demonstrated in previous works that had 
employed this functional (De La Pierre et al. 2011; Demichelis 
et al. 2010; Prencipe et al. 2011, 2012; Prencipe 2012; Scana-
vino et al. 2012; Scanavino and Prencipe 2013; Ungureanu et 
al. 2010, 2012; Zicovich-Wilson et al. 2004). With the purpose 
of testing and comparing our results with those reported from 
other authors, static calculations were repeated by employing the 
B3PW (Becke 1993) and PBE functionals (Perdew et al. 1996). 
As the localized basis sets are concerned, a 6-111G* basis (B1 
in the following), derived from the 6-21G* one by Dovesi et 
al. (1990) was mainly employed for the calculation of the zero 
point and thermal pressure contributions (see below), where 
the computational cost of the proper evaluation of dispersion 
effects in the phonon spectrum prevented us from the use of 
a very rich basis set. A very high-quality basis set (B2 in the 
following), precisely a triple-z (TPZ) basis by Peintinger et al. 
(2013) having the (6211/411/1) structure, specifically designed 
for solid-state calculations, was employed for the static equation 
of state (see below). Such basis is the one indicated as pob-
TZVP basis in Table 2 of Peintinger et al. (2013); the notation 
to specify the basis indicates the number of contracted functions 
(s/p/d). To get more variational freedom and a better description 
of directional bonding situations like those in diamond, a B1′ 
basis (6111/111/1) was also employed where, as in the case of 
the B2 basis and at variance with the B1 one, the ns and np 
electrons (n >2) were associated with different Gaussian func-
tions describing the radial part of the localized orbitals. More 
details about the procedure that has been followed to calculate 
energies and vibrational frequencies, and the computational 
parameters employed are provided in the Appendix. Static en-
ergies and vibrational frequencies at the different cell volumes 
are provided as supplementary material1.

At each cell volume, the static, zero point, and thermal pres-
sure were computed following the algorithms fully described in 

Prencipe et al. (2011). The procedures to estimate the bulk modu-
lus together with its pressure and temperature dependence, and 
the thermal expansion are also reported in Prencipe et al. (2011).

On the validity of the quasi-harmonic 
approximation

Since the quasi-harmonic approximation (QHA) was exten-
sively used to derive thermal pressures even at high temperatures, 
tests have been done to verify its validity even at those thermal 
conditions; indeed, as a rule of thumb, it is often claimed that 
such approximation can be safely applied at temperatures not 
higher than 2/3 of the melting temperature. Failures of the QHA 
at a given temperature, must clearly be seen in possible signifi-
cant deviations of the Born-Oppenheimer (BO) surface from the 
harmonic shape, around the equilibrium positions of the nuclei, 
at the cell volume corresponding to the given temperature (and 
pressure). Such deviations, if any, are likely to be present in the 
cases of the low-frequency modes, as the displacements of the 
nuclei along the corresponding normal mode coordinates are 
expected to be large and far away their equilibrium positions, 
thus exploring extended regions of the BO surface that could 
no longer be fitted by a harmonic expansion. A scan of the BO 
surface along the normal mode having the lowest frequency 
(283 cm–1) computed in a diamond supercell, at a cell volume 
corresponding to a temperature of 3000 K and a pressure of 0 
GPa, is reported in Figure 1: the continuous line represents the 
exact total energy as calculated, by the CRYSTAL09 program, by 
moving the nuclei point wise along the normal mode direction; 
the filled circles represent the energy values recalculated from 
a harmonic fit of the exact energy curve. No deviation at all of 
the BO, along the mode direction, from the harmonic shape is 
indeed observed, thus the validity of the QHA is clearly dem-
onstrated even at 3000 K and zero pressure. This is no wonder 
however, since the small thermal expansion of diamond even 
at high temperature, compared to those of the majority of other 
materials, is small (a = 1.7×10-5K-1, at 3000 K, see below): as 
the thermal expansion is one of the most apparent evidence of 
the deviation of the atomic interactions from the harmonic law 
(as it is well known, a perfectly harmonic crystal would have 
no thermal expansion at all), it is clear that in diamond such 
deviations are small even at high temperature, so that a QHA 
approach must be reasonably accurate.

Results and discussion

Equation of state
The discussion concerning the estimation of the equation of 

state (EoS) is here divided in two parts. The first one is devoted 
to the static EoS where the only contribution to the pressure at 
any given cell volume is from the electrostatic interactions among 
nuclei and electrons (no zero point and kinetic contributions 
from the vibrational motion of the atomic nuclei); the second 
part is devoted to the thermal equation of state where all of the 
contributions to the pressure are taken into account. As results 
for the static part are significantly dependent upon the quality 
of the basis set (see the Computational details section above), 
at variance with those concerning the zero point and thermal 
pressure contributions, as it will be shown below, such separated 
discussion makes the issues clearer.

1 Deposit item AM-14-510, Supplemental Tables 1–3. Deposit items are stored on 
the MSA web site and available via the American Mineralogist Table of Contents. 
Find the article in the table of contents at GSW (ammin.geoscienceworld.org) or 
MSA (www.minsocam.org), and then click on the deposit link.
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Static equation of state
The parameters obtained from a volume-integrated third-

order Birch-Murnaghan (BM3) fitting of the static energies, 
calculated with the two different B1 and B2 basis sets, are 
reported in Table 1. With respect to the B2 basis, the B1 basis 
set significantly overestimates the static equilibrium cell volume 
and underestimates the static bulk modulus. The particularly high 
sensitivity of the static bulk modulus of diamond to the basis 
set quality was also noted by De La Pierre (2011): indeed, low-
quality basis sets gave lower values of the static bulk modulus 
than those obtained with higher-quality bases (De La Pierre 
2011). The B1′ basis set differs from the B1 one by having a 
different description of the s and p orbitals (by contrast, in B1, s 
and p electrons are described by sp shells; see the Computational 
details section above); this should allow a better description 
of the electronic distribution in the case of systems involving 
directional bonds, as in diamond. Such split of the s and p elec-
trons has a small effect on the geometry, but increases the static 
bulk modulus by about 5 GPa (B1′/WC1LYP data in Table 1), 
approaching the value obtained by the B2 basis, which also has 
splitted s and p orbital descriptions.

Static results from Zhi-Jian et al. (2009) are also reported in 
Table 1: the localized basis set they employed (B3) was a 6-21G* 
and the chosen functionals/Hamiltonians were the B3PW (Becke 
1993; this is an hybrid Hamiltonian containing 20% of the exact, 
non-local HF exchange), and the Hartree-Fock (RHF) one. As 
K0,st is concerned, B3PW gave results comparable to those from 
WC1LYP, whereas the RHF datum is largely overestimated, as 
it could be expected on the basis of the widely known behavior 
of the Hartree-Fock Hamiltonian (see for instance Prencipe and 
Nestola 2005). Calculations of the static bulk moduli with our 
B1 and B2 basis sets, and the B3PW functional (as in the work 
by Zhi-Jian et al. 2009), gave values of 460.3 GPa (B1/B3PW) 
and 476.3 GPa (B2/B3PW data in Table 1), which are to be 
compared with the B1/WC1LYP and B2/WC1LYP calculations 
(same bases, different functionals), respectively giving K0,st = 
445.0 and 456.4 GPa, thus showing the significant effect of the 

Figure 1. Scan of the total energy (in Hartree) along the normal 
mode coordinate (Q) corresponding to a vibrational mode at 283 cm–1; Q 
has been given in unit Qmax: the maximum displacement, evaluated at the 
classical level, corresponding to the energy of the quantum ground state.

DFT functional on such calculated elastic parameter. The increase 
in K0,st, and the reduction of V0,st in passing from the WC1LYP to 
the B3PW functional is likely due to the corresponding increase 
of the Hartree-Fock weight in the exchange functional (16% in 
WC1LYP, 20% in B3PW), as it was already observed in Prencipe 
and Nestola (2005) in a study of the compressibility of a silicate 
(beryl) by means of functionals based on a B3LYP scheme, hav-
ing increasingly higher HF exchange contributions.

Another paper is that from Hebbache (1999), reporting a 
value of 463.1 GPa for the static bulk modulus, calculated at the 
DFT-LDA level. A static calculation of K0 by means of a purely 
DFT-GGA functional (PBE; Perdew et al. 1996), together with 
a planewave basis set and pseudopotentials, was reported by 
Mounet and Marzari (2005): they found a value of 432 GPa (PW/
PBE data in Table 1). For comparison, in this work a calculation 
with the B2 basis set and the PBE Hamiltonian gave 444.02 GPa 
(B2/PBE data in Table 1); such difference of more than 10 GPa 
is very likely be attributed to differences in the basis set struc-
ture (planewaves vs. localized basis sets). Although, the quality 
of the different basis sets cannot here be judged on the basis 
of the agreement with the experimental data as, by definition, 
no zero point and thermal effects are taken into account at the 
static level, it is known (see next section) that such effects do 
decrease the bulk modulus by up to 10 GPa; in this view, static 
bulk moduli that are equal or even smaller than the experimental 
room-temperature value (442–445 GPa; Grimsditch and Ramdas 
1975; Zouboulis et al. 1998) will likely be off the experimental 
datum by at least 10 GPa.

Smaller effects of both basis sets and Hamiltonians are ob-
served for Kʹst, which is about 3.6.

Thermal equation of state
By adding to the static pressures (from the higher-quality 

B2 basis set calculation) the zero point and thermal pressures 
estimated from the vibrational frequencies and their volume 
derivative (B1 and B2 calculations) of a 2 × 2 × 2 supercell of 
the conventional FCC diamond cell (32 k points of the reciprocal 
lattice, 189 normal modes of vibration), the total pressure at a 
given temperature could be estimated, for a set of values of the 
unit-cell volume. For any given fixed temperature value, the 
P(V) data were fitted by a BM3-EoS, so that the bulk modulus 
K0T, its pressure derivative KT́ and the equilibrium volume V0T 
could be estimated. Results are summarized in Table 2 for the 

Table 1. 	 Static cell volume (V0,st; in Å3) and cell parameter (a0,st; in Å) 
at the static equilibrium (Pst = 0); static bulk moduls (K0,st; 
in GPa) and its pressure derivative (K’st), obtained with dif-
ferent basis sets/Hamiltonians (see text for explanations 
concerning both the basis sets and the Hamiltonians)

Basis set/Hamiltonian	 V0,st	 a0,st	 K0,st	 K’st

B1/WC1LYP	 45.872	 3.5797	 445.0	 3.62
B1’/WC1LYP	 45.878	 3.5799	 450.3	 3.58
B2/WC1LYP	 45.187	 3.5618	 456.4	 3.62
B1/B3PW	 45.478	 3.5694	 460.3	 3.62
B2/B3PW	 44.793	 3.5514	 476.3	 3.61
B2/PBE	 45.477	 3.5694	 444.0	 3.66
B3/B3PWa	 45.526	 3.5707	 442.8	 3.43
B3/RHFa	 45.358	 3.5663	 508.7	 3.58
PW/PBEb	 45.432	 3.5682	 432	 –
a Zhi-Jian et al. (2009).
b Mounet and Marzari (2005).
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two different basis sets, at the reference temperature of 300 K. 
The significant difference between the bulk moduli estimated 
by using the B1 and B2 basis sets (more than 10 GPa, as in the 
static calculation reported in Table 1) is due to the differences 
of the static contributions to the total pressure. Indeed, using the 
EoS parameters estimated with the B2 basis set for the static part, 
together with the frequencies and their volume derivatives for the 
vibrational part [in the latter cases, having rescaled by a factor 
V0,st(B2)/V0,st(B1) the unit-cell volumes at which the vibrational 
frequencies were calculated, being V0,st(Bx) the equilibrium static 
volume optimized by using the Bx basis set; in this way, the 
frequencies at any given value of the static pressure for the B1 
base were assigned to cell volumes corresponding to the same 
static pressure for the B2 base] and fitting the resulting P(V) 
data, yielded a K0T of 439.0 GPa (V0T = 45.694 Å3, Kʹ = 3.65; 
B1* data in Table 2), which is only about 0.7 GPa higher than 
the bulk modulus estimated by using the frequencies calculated 
with the B2 basis set. This means that, even if the quality of the 
basis set had a significant impact on the estimated static elastic 
parameters, frequencies calculated with a poorer basis set could 
confidently be used for the evaluation of the thermal and zero 
point contributions to the total pressure.

The reduced computational cost of the B1 basis set allowed 
for the calculation of vibrational frequencies also in the case of 
larger supercells, thus allowing a more accurate estimation of the 
influence of dispersion effects upon the elastic parameters. By 
employing the B1 basis set, the calculations of the frequencies 
were repeated for the 3 × 3 × 3 and 1 × 1 × 4 supercells, thus 
reaching a total of 148 k points having |k| values in the range 
[21/2/8 |a*|, |a*|], where |a*| is the module of the reciprocal lattice 
parameter, and 885 normal modes. The distribution of the number 
of modes vs. their frequencies (VDOS: vibrational density of 
states) is reported in Figure 2, whereas a drawing of the disper-
sion curves along the [001]* direction in the reciprocal lattice 
(D path, from the G toward the X point) is shown in Figure 3; 
the agreement with the experimental data from inelastic neutron 
scattering (Warren et al. 1967), which are reported in the inset 
of Figure 3, is quite satisfactory (in Fig. 3, the frequencies for a 
1 × 1 × 8 supercell calculation are also reported).

The resolution with which the reciprocal space was sampled 
can be measured by the value of |k|min: the value of modulus of 
the shortest sampling k vector, which is in turn connected with 
the size of the supercell used in the calculation of the frequen-
cies. The impact on the bulk modulus of the increasingly larger 
number of sampled k points, as the resolution is increased by 
reducing |k|min moving the correspondent k vector toward the 
G point, can clearly be seen in Figure 4, where K0 is plotted 
against |k|min (see also B1** data in Table 2; static parameters 
were from the B2 basis calculations): K0 reaches the convergence 

with respect to the number of k points when |k|min is smaller 
than about 0.77|a*| (corresponding to 59 k sampled points). No 
larger supercells (smaller |k|min) than the 3 × 3 × 3 and 1 × 1 × 4 
ones are then required for an accurate evaluation of the bulk 
modulus, at least as phonon dispersion effects on the latter are 
concerned. The small variations of K0 with |k|, for |k| < 0.77|a*|, 
allowed us to derive an uncertainty (precision) of the estimated 
K0 of about 0.1 GPa over an average value 445.4 GPa. However, 
as discussed above, this datum is likely to be overestimated of 
almost 1 GPa with respect to the one that could be derived by 
using the higher quality B2 basis set for the calculation of the 
frequencies. In conclusion, our best estimate of K0 for diamond 
at 300 K was 444.6 GPa, with an uncertainty (accuracy: mainly 
due to the basis set bias) of 0.8 GPa. Kʹ and V0 were, respectively, 
3.60 and 45.689 Å3 (a0 = 3.575 Å).

As usual for all the ab initio calculations, either at the HF/
DFT or purely DFT GGA levels, the estimated cell volumes at 

Table 2. 	 Equilibrium cell volume (V0T; in Å3) and cell parameter (a0T; 
in Å); bulk modulus (K0T; in GPa) and its pressure derivative 
(K’T), at the temperature of 300 K, calculated with different 
basis sets (WC1LYP functional)

	 V0T	 a0T	 K0T	 K’T

B1	 46.399	 3.5934	 427.7	 3.65
B2	 45.717	 3.5757	 438.3	 3.66
B1*	 45.694	 3.5751	 439.0	 3.65
B1**	 45.689	 3.5750	 445.4	 3.60

Figure 2. Vibrational density of state of diamond (VDOS). See 
text for explanation.

Figure 3. Phonon dispersion in diamond along the [001]* path in 
the reciprocal space (D path), from the G point (Brillouin zone center) 
to the X point (zone border). The inset represents the experimental data 
along the same path, from the work of Warren et al. (1967). Reprinted 
excerpt with permission from Warren, J.L., Yarnell, J.L., Dolling, G., 
and Cowley, R.A., Physical Review, 158, 805, 1967. Copyright (1967) 
by the American Physical Society. 
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any pressure and temperature condition were quite overestimated 
with respect to the experimental ones. In other words, the cur-
vature of the E(V) function is usually accurately estimated, at 
variance with the position of its minimum. The recommendation 
is therefore to use, in the equation of state, the experimental 
equilibrium cell volume at a given temperature (which is gener-
ally highly accurate), together with the calculated K0T and KT́.

Other ab initio estimations of the bulk modulus were avail-
able for diamond. From temperature-dependent elastic constant 
calculations, Valdez et al. (2012) found a value of 453.54 GPa 
by using the purely DFT-LDA functional. Another paper by Xie 
et al. (1999) was devoted to the ab initio equation of state of 
diamond; however they did not report a numerical value of the 
bulk modulus at 300 K, which had to be inferred from the figure 
they published (Fig. 6 in Xie et al. 1999), where it appeared to be 
slightly overestimated with respect to the experimental datum. 
Their (LDA) results were consistent with those from Valdez et 
al. (2012). By employing a GGA-PBE functional (Perdew et 
al. 1996), Mounet and Marzari (2005) gave a value of 422 GPa 
at 300 K from a volume-integrated BM4-EoS fit of their E(V) 
data. It should be stressed that differences in the evaluated bulk 
moduli from different authors were due to either the different 
DFT functionals employed in each case, or the basis sets, as 
already discussed above in the section concerning the static EoS.

Experimental data from measurements of the elastic constants 
of diamond, at variable temperature, gave value of 442.3 GPa 
(Grimsditch and Ramdas 1975) and 444.8 GPa (Zouboulis et al. 
1998); in the latter case, the value of the bulk modulus at 300 
K was obtained from a fit of K0(T) values measured in the [300, 
1600 K] temperature range, according to the function

K0 (T) = K0 (300 K) + BT (T2 – 3002) 	  (1)

with K0 (300 K) = 444.8 GPa and BT = –1.2×10-5 GPa/K2. By 
performing the same fit on our K0 (T) B1** data, we got K0 (300 
K) = 443.9(4) GPa, and BT = –0.96(3)×10-5 GPa/K2 (in paren-
theses are the errors from the fit). Even by considering the bias 

due to the basis set quality (see above), our datum fell very close 
and between the two experimental data available.

Isobar curves of the estimated bulk moduli as functions of 
temperature, in the [0, 2000 K] range, are reported in Figure 
5, for pressures of 0, 10, 20, and 30 GPa; as it can been seen 
from the figure, all of the curves exhibited the same behavior 
with respect to the temperature; indeed, fitting the KP(T) data 
with the same quadratic function as above, gave KP(300 K) = 
479.5(4), 514.4(3) and 548.8(3) GPa for P = 10, 20, and 30 GPa, 
respectively, and the same BT values as the case of P = 0 GPa 
[–0.96(3)×10-5 GPa/K2].

Thermal expansion
The quasi-harmonic estimation of the thermal expansion

αV (T )=
1
V
∂V
∂T
⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟
P

 	 (2)

has been plotted in Figure 6 in the [1, 300 K] temperature range. 
The most recent and highly accurate experimental aV(T) curve 
from Stoupin and Shvyd’ko (2011) is also reported in the same 

Figure 4. Bulk modulus at 300 K (K0 in GPa) as a function of 
the size of the supercell employed for the calculation, the latter being 
measured by the module of the corresponding smallest k vector (in unit 
of |a*|). Note that |k| = 1|a|* corresponds to a vector of the reciprocal 
lattice, which is therefore equivalent to the G point.

Figure 5. Bulk modulus (KP) as a function of temperature, at four 
different pressures (isobar curves).

Figure 6. Thermal expansion coefficient (aV; referred to the volume 
of the unit cell) as a function of temperature (low-temperature data). 
The experimental data (dashed curve) are from the fit as it is reported in 
Stoupin and Shvyd’ko (2011).
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figure. The two curves nearly overlap; in particular the difference 
between the calculated and experimental coefficients, at 300 K 
(3.19×10-6 and 3.22×10-6K-1, respectively), is 2.7×10-8K-1, which 
is consistent with the accuracy of 10-8K-1, estimated for the ex-
perimental measurements by Stoupin and Shvyd’ko (2011). Very 
good agreement exists with other literature data like those from 
Reeber and Wang (1996): at 300 K the experimental datum for 
aV is 3.05×10-6K-1 (slightly underestimated with respect to the 
experimental data of Stoupin and Shvyd’ko 2011); at 1000, 2000, 
and 3000 K the experimental thermal expansion coefficients 
are 1.34×10-5, 1.64×10-5, and 1.71×10-5K-1, respectively, to be 
compared with the calculated data of, respectively 1.25×10-5, 
1.50×10-5 and 1.60×10-5K-1.

The very high reliability of the obtained thermal expansion, 
as demonstrated by the comparison of the calculated data with 
the experimental ones at room pressure, makes us confident 
about thermal expansion data at higher pressures. Figure 7 re-
ports the calculated aV(T) curves for the pressures of P = 0, 10, 
20, and 30 GPa, in the [0, 2000 K] temperature range. As what 
it is frequently required is the cell volume at a given pressure 
and temperature [VP(T)], an empirical relation has been derived 
of the form

VP(T )
VP(300K)

=1+C1T +C2T
2+C3T

3+
C4
T
+
C5
T 2

 	 (3)

where VP(300 K) is the cell volume at P and T = 300 K. This 
relation can confidently be used in the [300, 2500 K] temperature 
range; the five Ci coefficients are reported in Table 3 for seven 
different values of the pressure in the [0, 30 GPa] range. Coef-

ficients for other values of pressure in the range can easily be 
derived by interpolation. As concerns other ab initio determina-
tions of thermal expansion at high pressure and temperature, 
substantial agreement exists between our data and those from 
Xie et al. (1999), who employed an unspecified standard purely 
DFT functional, and a plane wave basis set. Ivanova and Mavrin 
(2013) also reported the calculation of thermal expansion of 
diamond in the [0, 1500 K] temperature range (at the LDA-
DFT level of the theory); from the plot they reported (Fig. 4 in 
Ivanova and Mavrin 2013) it appears that aV = 3×aL = 3.6×10-6 
K-1 at 300 K, which is somewhat overestimated with respect to 
the experimental data from Reeber and Wang (1996) and Stoupin 
and Shvyd’ko (2011) at the same temperature (3.22×10-6 and 
3.05×10-6K-1, respectively), but in substantial agreement with 
older experimental data from Slack and Bartram (1975), which 
they use as reference.

Again on the validity of the quasi-harmonic approximation
In addition to the considerations stated above in the Compu-

tational Details section about the validity of the QHA approach 
in deriving thermal pressures, we do stress here that the excellent 
agreement among the data calculated in the present work and the 
best experimental determinations, for not just one parameter at 
a given P/T condition, but for both compressibility and thermal 
expansion over ranges of pressure and temperature, is in itself 
a demonstration of the validity of QHA. Generally, failures of 
some algorithm in a given procedure or model are invoked when 
a disagreement appears between calculated and experimental 
data, whereas the contrary is rather unusual at least if not lucky 
random error cancellations do occur. However, such cancellations 
are extremely unlikely to occur at the same time for different 
parameters and at different P/T conditions, as in the present case.

Implications

Diamond is a very important mineral formed in the deep 
mantle, and it is considered a marker of high-pressure condi-
tions at some moments during the genesis of the rocks in which 
it is found. In this view, the knowledge of its equation of state is 
fundamental (as also evidenced by the large number of publica-
tions on this subject) for any accurate quantitative estimation 
of the pressures involved in the rock-forming processes in the 
Earth’s mantle. More specifically, the thermoelastic parameters 
calculated in this work were used to calculate the pressure of 
formation of the diamond-olivine pair using the data by Nestola et 
al. (2011). In that work, the authors adopted a novel experimental 
approach using single-crystal X‑ray diffraction to determine 
the internal pressure of the olivine inclusion still trapped in a 
diamond from Udachnaya. They claimed that the experimental 
approach provided a very low error in the determination of the 
pressure of formation, which is crucial for geobarometry purpose. 
While this was actually true, the only real improvement with 
respect to past works was relative to the determination of the 
internal pressure of the inclusions, whereas the other parameters 
used for the derivation of the pressure of formation were ob-
tained from old literature data, which were generally affected by 
significant experimental uncertainties. Following the same type 
of calculation carried out in Nestola et al. (2011), we used the 
thermo-elastic parameters calculated for diamond in this work. 

Figure 7. Thermal expansion coefficient (a; referred to the unit-
cell volume) as a function of temperature, at four different pressures 
(isobar curves).

Table 3. 	 Coefficients of Equation 3 for the interpolation of the ratio 
VP(T)/VP (300 K) at several pressures, in the [300, 2500 K] 
temperature range; see text for explanations

P	 C1(x106) K–1	 C2(x109) K–2	 C3(x1013) K–3	 C4 K	 C5 K2

0	 2.78	 5.62	 –8.47	 –1.48	 330.61
5	 2.57	 5.47	 –8.26	 –1.41	 316.17
10	 2.37	 5.33	 –8.07	 –1.34	 302.75
15	 2.19	 5.20	 –7.90	 –1.28	 290.18
20	 2.03	 5.07	 –7.72	 –1.22	 278.52
25	 1.88	 4.95	 –7.55	 –1.17	 267.50
30	 1.74	 4.83	 –7.39	 –1.12	 257.44
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In detail, at a fixed temperature of 1100 K, the differences in 
the pressure of formation between the present work and that of 
Nestola et al. (2011), is on the third digit (3.446 against 3.441 
GPa, respectively) and remains of the same amount at 1600 K 
(4.936 against 4.941 GPa, respectively). This means that our 
calculated thermo-elastic parameters are totally consistent with 
the experimental ones but with the great added advantage related 
to the absence of any uncertainty. Our new diamond data not only 
could be safely used for calculation of the pressure of formation 
for inclusions in diamonds typical of the upper mantle, but also 
for those inclusions found in the so called “super deep diamonds.” 
Adopting our data will ensure, at the same time, reliability and 
absence of uncertainty resulting in a very low error in the pres-
sure of formation derivation.
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Appendix

Static energies and vibrational frequencies at the (static) 
equilibrium, and at fixed cell volumes, were performed by means 
of the ab initio CRYSTAL09 code (Dovesi et al. 2009), which 
implements the Hartree-Fock and Kohn-Sham, self-consistent 
field (SCF) method for the study of periodic systems (Pisani et 
al. 1988), by using a Gaussian type basis set. The present choice 
of the Hamiltonian and the basis set employed were discussed 
above in the Computational Details section. The DFT exchange 
and correlation contributions to the total energy were evaluated 
by numerical integration, over the cell volume, of the appropriate 
functionals; a (99, 1454)p grid was used, where the notation (nr, 
nx)p indicates a pruned grid with nr radial points and nx angular 
points on the Lebedev surface in the most accurate integration 
region (see the ANGULAR keyword in the CRYSTAL09 user’s 
manual, Dovesi et al. 2009). Such a grid corresponds to 2920 
integration points in the unit cell at the equilibrium volume. The 
accuracy of the integration can be measured from the error in the 
integrated total electron density, which amounts to 5×10-5|e| for 
a total of 12 electrons in the cell. The thresholds controlling the 

accuracy of the calculation of Coulomb and exchange integrals 
were set to 10 (ITOL1 to ITOL4) and 22 (ITOL5; Dovesi et al. 
2009). The diagonalization of the Hamiltonian matrix was per-
formed at 16 independent k vectors in the reciprocal space (with 
reference to the primitive unit cell. Monkhorst net; Monkhrost 
and Pack 1976) by setting to 6 the shrinking factor IS (Dovesi 
et al. 2009).

The cell parameter at the static conditions was optimized by 
analytical gradient methods, as implemented in CRYSTAL09 
(Civalleri et al. 2001; Dovesi et al. 2009). Geometry optimization 
was considered converged when each component of the gradient 
(TOLDEG parameter in CRYSTAL09) was smaller than 0.00001 
Hartree/Bohr and displacements (TOLDEX) with respect to the 
previous step were smaller than 0.00004 bohr. Static energies 
at each cell volume are provided as supplementary material1 
(Supplemental Tables 1a and 1b for the B1 and B2 basis sets, 
respectively). Vibrational frequencies and normal modes were 
calculated at different cell volumes, within the limit of the har-
monic approximation, by diagonalizing a mass-weighted Hessian 
matrix, whose elements are the second derivatives of the full 
potential of the crystal with respect to mass-weighted atomic 
displacements (see Pascale et al. 2004 for details). The thresh-
old for the convergence of the total energy, in the SCF cycles, 
was set to 10-10 hartree (TOLDEE parameter in CRYSTAL09). 
Results are provided as supplementary material1 (Supplemental 
Tables 2a and 2b for the B1 and the B2 basis sets, respectively).

Total pressures (sum of static, zero point, and thermal 
pressures) at different unit-cell volumes and temperatures are 
reported as supplementary materials (Supplemental Table 3).


