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Abstract

Hundred-micrometer-sized calcium-aluminum-silicates (CAS) inclusions occur in moissanite-4H, 
moissanite-15R, and moissanite-6H from Turkey. These inclusions commonly consist of tabular exso-
lution lamellae of two different minerals. By combined electron microprobe and Raman spectroscopy 
analysis, at least eight different, essentially Mg- and Fe-free Ca-Al-silicate or Al-silicate phases have 
been discerned. The most common phase is dmisteinbergite, a hexagonal modification of CaAl2Si2O8, 
occurring in association with lamellae of Cax(Al,Si)1–xO3 or Ca1–x(Al,Si)2+xO5 compositions. All three 
phases contain significant amounts of BaO (up to 2 mol% of celsiane component in dmisteinbergite), 
SrO, SO3, and light rare earth elements (LREE). In particular, Ca1–x(Al,Si)2+xO5 contains up to 2.1 wt% 
of LREE, 3.9 wt% of F, and significant traces of Cl, while it is also associated to osbornite (TiN). Pure 
ghelenite, Ca2Al2SiO7, and three additional compositions, namely CaAl4–xSixO7, Ca1–x(Al,Si)3+xO6, and 
Ca3–x(Al,Si)6+xO14 have been found, either occurring as single grains or forming exsolution lamellae. 
They also contain significant amounts of BaO, SrO, SO3, and LREE. One last intriguing phase is com-
posed in average of 65.9 wt% SiO2, 17.4% Al2O3, 3.0% alkalis, 6.0% BaO, 2.0% CaO+MgO, 0.9% 
ZrO2, and up to 0.5% LREE. Dmisteinbergite and ghelenite show Raman peaks in very good agreement 
with literature data, Cax(Al,Si)1–xO3 shows main Raman modes at 416 and 1009 cm–1, Ca1–x(Al,Si)3+xO6 
at 531 and 1579 cm–1 while Ca3–x(Al,Si)6+xO14 has a strong peak at 553 cm–1. CaAl4–xSixO7 shows a 
weak Raman pattern, while Ca1–x(Al,Si)2+xO5 has no detectable Raman modes. Since the association 
moissanite-CAS is thermodynamically not stable at ambient pressure and moissanite crystals hosting 
the CAS phases have d13C values typical of deep-mantle origin, we interpret the CAS inclusions as 
partially retrogressed HP minerals. Striking analogies exist between observed CAS compositions and 
experimentally obtained HP-HT mineralogy. For instance, Cax(Al,Si)1–xO3 contains up to 25 mol% of 
Al2O3, which is considered as the upper limit of alumina solubility in Ca-perovskite. The study confirms 
that CAS phases are an important mantle depository for large ion lithophile elements (LILE) and LREE.
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Introduction

The natural occurrence of moissanite, natural a-silicon car-
bide, under terrestrial conditions was vigorously debated until 
the end of the 1980s. Milton and Vitaliano (1984) critically but 
correctly proposed a series of six independent criteria to discern 
natural moissanite occurrences from synthetic SiC contamina-
tions. Extensive field researches in the last three decades fulfilled 
most of these criteria. The first one concerned the finding of 
moissanite as inclusion in other minerals. In fact, moissanite 
crystals were reported included in diamonds and carbonados 
from kimberlites and lamproites from many continental cratons 
in Russia (Yakutia; Marshintsev 1990), China (Fuxian; Leung 
1990), U.S.A. (Colorado; McCammon et al. 1997; Otter and 
Gurney 1986, 1989), South Africa (Monastery Mine; Moore 
et al. 1986; Moore and Gurney 1989; Koffiefontein mine, 
Klein-BenDavid et al. 2007), Central Africa (De et al. 1998), 
Australia (Argyle lamproite; Jaques et al. 1989), and Brazil (Sao 

Luis River placers; Wilding et al. 1991; Svisero 1995; De et al. 
1998; Kaminsky 2012). Moissanite was also reported included 
in garnets from a Chinese retrogressive eclogite (Qi et al. 2007). 
These authors show excellent thin section microphotographs of 
a dozen of moissanite crystals included, along with coesite and 
rutile, in pyrope. In serpentinite from the Chinese Dabie Moun-
tains, Xu et al. (2008) present thin section microphotographs 
of moissanite associated to rutile and baddeleyite. Moreover, 
moissanite was also reported as inclusions in olivine from the 
diamondiferous Karashoho pipe from the Bukantau mountains 
from Uzbekistan (Golovko and Kaminsky 2010), and in garnets 
from felsic granulites from the Moldanubian Zone of the Bo-
hemian Massif (Perraki and Faryad 2014). These latter authors 
also show thin section microphotographs where moissanite is 
unequivocally contained within the hosting mineral. Finally, 
from the Luobusa ophiolite, Tibet, Robinson et al. (2015) and 
Liang et al. (2014) reported moissanite in olivine from peridotite, 
and in Cr-spinel from dunite, respectively. Euhedral, unbroken 
crystals, the second criterion, have been reported from Fuxian 
(Leung et al. 1990; Leung 1990), Turkey (Di Pierro et al. 2003), 
and Yakutia (Shiryaev et al. 2011), while abundant silicon and 
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Fe-silicides, systematically reported as inclusions in terrestrial 
moissanite and considered to represent former melt-inclusions 
(Marschintsev 1990; Pankov and Spetsius 1990; Mathez et al. 
1995; Bai et al. 1993, 2000, 2003; Di Pierro et al. 2003; Rob-
inson et al. 2004), is the third criterion to distinguish synthetic 
from natural moissanite. Besides the above-mentioned Chinese 
findings, freshly broken rocks showing abundant enclosed SiC, 
the fourth criterion, have been reported by Bauer et al. (1963), 
Leung (1988), and Di Pierro et al. (2003). The fifth criterion 
proposed by Milton and Vitaliano (1984) is to find moissanite in 
eutectic or sutured intergrowth with magmatic minerals. Mathez 
et al. (1995) reported three oxygen-bearing inclusions in natural 
SiC from Yakutia, namely one FeMg-silicate grain directly as-
sociated to moissanite, a sinoite grain, Si2N2O, and a crystal of 
a light rare earth element (LREE) silicate containing 75 wt% of 
LREE2O3, both associated to silicide inclusions in SiC. Leung et 
al. (1996) reported rutile grains included in moissanite in kim-
berlite at Kimberley. Oleynikov et al. (1987) reported Al-silicate 
included in moissanite from mafic rocks from Russia. Robinson 
et al. (2004) reported gehlenite-like composition from a grain 
included in moissanite from Luobusa, while Gao and Liu (2008) 
found zircon included in moissanite from a carbonatite xenolith. 
At the best of our knowledge no association of SiC and oxides 
has been reported in synthetic SiC literature. The sixth, arguable, 
criterion of Milton and Vitaliano (1984) of finding large (over 1 
cm) crystal has not been fulfilled so far.

By analogy with similar findings from kimberlitic (Pankov 
and Spetsius 1990; Leung et al. 1990; Mathez et al. 1995; Shiry-
aev et al. 2011) and ophiolitic environments (Bai et al. 2000; 
Robinson et al. 2004; Trumbull et al. 2009; Yang et al. 2011), a 
natural origin of the Turkish moissanite was proposed, mainly 
based on presence of silicon and Fe-silicide inclusions (Di Pierro 
et al. 2003). A subsequent carbon isotope study confirmed that 
the moissanites have d13C values typical of other occurrences 
from the deep mantle (Trumbull et al. 2009).

Here we report the discovery of eight different LREE- and 
Ba-bearing Ca-Al-silicates (CAS) and Al-silicates (AS), found 
as hundred-micrometer-grain-sized inclusions in moissanite 
from Turkey (Di Pierro et al. 2003). We will show that from a 
thermodynamic point of view the observed Ca-Al mineral as-
sociation can be neither stable under ambient-pressure conditions 
of the Acheson process nor any other industrial way of producing 
silicon-carbide (Knippenberg 1963; Gauthier 1978; Jepps and 
Page 1983; Lindstad 2002). Zhou and Telle (2010), in fact, using 
FactSage software package found that undesired Al2O3, CaO, 
Fe2O3, and MgO impurities from the Acheson raw materials, can 
condense as anorthite, gehlenite, krotite, CaAl2O4, wollastonite, 
and mullite, in areas at temperatures below 1500 °C during the 
run, while in the internal and hotter part of the Acheson reactor 
above 1900 °C, where a-SiC modifications are stable, elementary 
Al, Ca, Fe, and Mg are present in the gas form.

Samples and methods
As described in Di Pierro et al. (2003), the here-reported rock is one unique 

specimen found at beach by Salvatore Musacchia, around 150 km NW from Izmir, 
Turkey. The source outcrop having not been found so far, the sample is thought to 
be derived from Tertiary volcanic rocks outcropping in the area (e.g., Innocenti et 
al. 2005; Aldanmaz et al. 2006). The sample shows a bulk bluish color and consists 
of a very fine-grained mixture of brucite, phlogopite, calcite, and magnesite, in 

which abundant macrocrysts of quartz and moissanite occur.
Besides optical microscopy, electron microprobe analyses (EMPA) have been 

performed at the Institute for Geology, University of Bern using a Cameca SX 50 
microprobe, wavelength-dispersive spectrometers (WDS), and operating conditions 
of 15 kV and 20 nA. Natural and synthetic silicate and oxide standard were used: 
almandine (Fe), olivine (Mg), orthoclase (K, Si), anorthite (Ca, Al), eskolaite (Cr), 
tephroite (Mn), albite (Na), ilmenite (Ti), and bunsenite (Ni). Detection limits in 
element wt% are Si 0.02; Ti 0.03; Zr 0.04; Na 0.03; Al 0.02; Y 0.06; Ce 0.08; La 
0.08; Fe 0.07; Mn 0.08; Mg 0.03; Ca 0.02; Sr 0.07; Ba 0.08; K 0.02; Na 0.03; S 0.03; 
and F 0.13 and Cl 0.04. Additional analyses were obtained at the University Claude 
Bernard Lyon-1 and Ecole Normale Supérieure (ENS) of Lyon (Joint Laboratory 
of Earth Sciences), operating conditions of 15 kV and 20 nA.

Raman spectra were recorded with a DILOR XY spectrometer equipped with 
confocal optics and a nitrogen-cooled CCD detector, at the ENS-Lyon. A microscope 
has been used to focus the excitation laser beam (514 nm lines of a Spectra Phys-
ics Ar+ laser) to a 2 mm spot and to collect the Raman signal in the backscattered 
direction. Collecting times were 20 to 60 s at low power of 2–30 mW, to avoid 
sample deterioration (not observed during spectra acquisition).

X‑ray mapping was performed with a energy-dispersive system (EDS) on a 
Jeol 7600F scanning electron microscope (SEM) using an acceleration voltage of 
15 keV conditions, at Saint-Gobain Recherche.

Characterization of CAS phases

In a polished thin section containing 341 moissanite crystals, 
CAS inclusions have been observed in at least 21 grains (~6%). 
Hosting silicon-carbide crystals are 6H, 15R, or 4H polytypes.

Ca-Al-silicates and Al-silicates are coarse-grained, up to 
150 mm in length, tabular or xenomorphic, or drop-like in shape 
(Figs. 1–3) and found as inclusions or in oriented contact with 
moissanite crystals.

In reflected light and in BSE images, CAS and AS phases 
show different shades of gray while they normally show either 

Figure 1. Thin section photos (reflected light) of Ca-Al-silicates 
(CAS) in contact or forming inclusions in moissanite crystals. (a) SiC no. 
78: system of multiple inclusions. CAS are in gray, metallic Si in white. 
The gray crystal growing on the left rim is gehlenite (Ghl: analyses 21–24 
in Table 1). The crystal above is Dmisteinbergite (Dms: analysis 17 in 
Table 1). The CAS crystal to the right has Ca1–x(Al,Si)3+xO6 composition. 
(b) SiC no. 199: the two gray inclusions of CAS are arrowed. Details 
of the larger CAS inclusion, along with the EDS X‑ray mapping, are 
presented in Figure 2. (c) SiC no. 85 containing two gray inclusions 
of CAS. (d) SiC no. 244 with a CAS crystal (arrowed: analyses 2–4, 
and 10–11 in Table 1) on the surface, and associated with a TiN grain, 
in white. Details of this grain, along with the EDS X‑ray mapping, are 
presented in Figure 3. (Color online.)
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very low or no birefringence (Fig. 1). They are mainly included in 
moissanite crystals, but some are growing on SiC boundaries (Fig. 
1). They occur also associated to silicon and Fe-Ti-Al-Ca-silicide 
inclusions in moissanite (Fig. 1). Most CAS inclusions present 
exsolution textures, consisting of 10–20 mm wide and maximally 
50 mm long dark and bright lamellae, intersecting at low angles 
(Figs. 2–3). Point counting shows that the two exsolved phases 

occupy each about 50 vol% of the Ca-Al inclusions.
Microprobe analyses of CAS crystals have been carried out 

in fourteen moissanite grains and representative analyses are 
compiled in Table 1. Compositions are somewhat variable but 
at least eight different compounds can be distinguished.

The most common type of CAS inclusion consist of an as-
sociation of dark lamellae of stoichiometric CaAl2Si2O8 (Table 1) 
and bright lamellae of an unreported, apparently stoichiometric, 
Cax(Al,Si)1–xO3 phase (Table 1; Fig. 2). About 1–2 mol% of 
“celsiane”-component is found in the CaAl2Si2O8 structure, 
which is also SrO-, SO3-, and LREE-bearing (up to 0.30 wt%; 
Table 1). CaAl2Si2O8 shows main Raman modes at 120, 225, 330, 
442, 508, 807, 897, 917, and 1126 cm–1 (in bold the strongest 
ones, see Fig. 4a), which corresponds to the pseudo-hexagonal 
polymorph (Daniel et al. 1995) named dmisteinbergite (Jam-
bor and Vanko 1992; Sokol et al. 1998). Dmisteinbergite was 
also observed as the only mineral present in some inclusions. 
Cax(Al,Si)1–xO3 can contain up to 40.18 wt% of Al2O3, while it 
is also BaO-, SrO-, SO3-, and LREE-bearing (up to 0.33 wt%; 
Table 1). This phase shows main Raman modes at 175, 416, 
1009, and 1136 cm–1 (Fig. 4b).

Figure 2. X-ray mapping of CAS inclusion in SiC no. 199. Dark 
lamellae in the BSE image are dmisteinbergite, while bright areas have 
a Cax(Al,Si)1–xO3 composition. (Color online.)

Figure 3. X-ray mapping of CAS inclusion in SiC no. 244. Dark 
lamellae in BSE image are dmisteinbergite (Table 1, analyses 10 and 
11), while bright areas have a Ca1–x(Al,Si)2+xO5 composition (Table 1, 
analyses 2 to 4). (Color online.)

Figure 4. Raman spectra of Ca-Al-rich phases. (a) Spectra of 
dmisteinbergite inclusions (Dms), along with that of hosting 4H-SiC. 
Blue: pure dmisteinbergite in grain 244; red: dminsteinbergite in 
association with SiC-4H in grain 85. (b) Mixed spectra of Cax(Al,Si)1–xO3, 
along with that of hosting phase 4H-SiC. Blue: spectrum obtained in grain 
85; red: spectrum obtained in grain 78. (c) Two pure spectra of gehlenite 
(Ghl) in grain 78 (both blue and red). (d) Spectrum of Ca1–x(Al,Si)3+xO6. 
(e) Spectra of Ca3–x(Al,Si)6+xO14 phase, along with that of hosting SiC 
(grain 27). Green: spectrum displaying a strong moissanite peak and a 
weaker Ca3–x(Al,Si)6+xO14 peak; red: spectrum showing strong peak of 
Ca3–x(Al,Si)6+xO14 and weak moissanite peak; blue: spectrum showing 
only weak Ca3–x(Al,Si)6+xO14 peak. (f) Spectra of Al-silica in grain 220. 
Blue: spectrum displaying mainly the strongest peaks at 461 cm–1; red: 
more detailed spectrum showing additional peaks and one pronounced 
at 1524 cm–1. (Color online.)
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Table 1. 	 Microprobe analyses of CAS phases
	 Ca1–x(Al,Si)3+xO6	 CaAl4–xSixO7	 Cax(Al,Si)1–xO3

No. of hosting SiC	 13	 78	 273	 29	 29	 78	 78	 78	 250	 250	 250	 250	 49	 49
No. of µ-probe	 1	 18	 46	 59	 60	 10	 11	 12	 33	 35	 36	 38	 62	 63
SiO2	 18.01	 20.87	 28.16	 5.66	 4.72	 37.77	 34.37	 32.59	 37.08	 37.99	 37.21	 37.56	 36.92	 36.25
TiO2	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
ZrO2	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
Al2O3	 58.73	 64.01	 56.86	 75.06	 76.15	 39.02	 39.62	 40.18	 35.22	 35.52	 35.29	 35.01	 26.11	 28.29
Y2O3	 0.14	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.07	 0.07	 bd	 bd
La2O3	 bd	 bd	 bd	 bd	 bd	 bd	 0.08	 bd	 bd	 bd	 bd	 0.13	 bd	 bd
Ce2O3	 bd	 bd	 bd	 0.09	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.13	 bd	 bd
FeO	 bd	 bd	 0.09	 bd	 bd	 0.15	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
MnO	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.08	 bd	 bd	 bd	 bd	 bd	 bd
MgO	 0.11	 0.22	 bd	 bd	 bd	 0.13	 0.08	 0.07	 0.14	 0.05	 0.04	 0.09	 0.16	 0.23
CaO	 25.02	 15.10	 13.49	 21.24	 21.51	 22.52	 25.61	 27.09	 27.16	 26.74	 24.22	 25.91	 36.27	 35.31
SrO	 0.07	 bd	 0.08	 0.16	 0.22	 0.12	 0.08	 bd	 bd	 0.11	 bd	 0.09	 0.40	 0.45
BaO	 0.21	 0.14	 0.33	 0.22	 0.06	 0.62	 1.07	 0.93	 1.04	 0.59	 1.25	 1.05	 0.82	 0.23
Na2O	 bd	 bd	 0.09	 bd	 bd	 0.08	 0.11	 0.14	 0.04	 0.05	 0.04	 0.07	 0.33	 0.34
K2O	 bd	 0.03	 0.06	 bd	 bd	 0.06	 0.12	 0.14	 0.03	 bd	 bd	 0.06	 0.03	 bd
SO3	 0.46	 0.21	 0.59	 0.17	 bd	 0.42	 0.71	 0.77	 0.42	 0.99	 1.22	 0.46	 0.20	 bd
 Total	 102.75	 100.58	 99.77	 102.60	 102.66	 100.89	 101.85	 101.99	 101.13	 102.08	 99.34	 100.63	 101.24	 101.10
Si	 0.65	 0.73	 0.99	 0.24	 0.20	 0.67	 0.62	 0.59	 0.67	 0.68	 0.69	 0.68	 0.69	 0.68
Ti	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Zr	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Al	 2.49	 2.64	 2.34	 3.71	 3.76	 0.82	 0.84	 0.86	 0.75	 0.75	 0.77	 0.75	 0.58	 0.62
Y	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
La	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Ce	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Fe	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Mn	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Mg	 0.01	 0.01	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01
Ca	 0.96	 0.57	 0.51	 0.96	 0.97	 0.43	 0.49	 0.53	 0.53	 0.51	 0.48	 0.50	 0.73	 0.70
Sr	 0.00	 0.00	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Ba	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.01	 0.01	 0.00	 0.01	 0.01	 0.01	 0.00
Na	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.01
K	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
S	 0.01	 0.01	 0.02	 0.01	 0.00	 0.01	 0.01	 0.01	 0.01	 0.01	 bd	 0.01	 0.00	 0.00
∑ cations	 4.13	 3.96	 3.87	 4.92	 4.93	 1.94	 1.98	 2.00	 1.97	 1.96	 1.96	 1.96	 2.04	 2.03
No. Oxygen	 6	 6	 6	 7	 7	 3	 3	 3	 3	 3	 3	 3	 3	 3

	 Ca2Al2SiO7  Ghelenite	 CaAl2Si2O8  Dmisteinbergite
No. of hosting SiC	 78	 78	 78	 78	 78	 78	 78	 250	 272	 273	 273	 175	 175	 175	 175	 175	 244	 244
No. of µ-probe	 5	 8	 21	 22	 23	 24	 17	 37	 39	 44	 45	 51	 52	 54	 55	 56	 10	 11
SiO2	 23.48	 22.62	 25.43	 21.98	 24.73	 25.06	 40.41	 40.37	 40.52	 44.53	 43.87	 40.69	 42.48	 44.06	 41.61	 43.83	 44.06	 40.59
TiO2	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.06	 0.08	 bd	 bd	 bd	 bd	 bd	 bd	 bd
ZrO2	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
Al2O3	 37.01	 38.44	 36.84	 45.17	 38.61	 39.10	 38.37	 36.92	 36.01	 35.54	 34.16	 36.16	 36.17	 34.93	 37.49	 36.53	 36.12	 38.57
Y2O3	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
La2O3	 bd	 0.09	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.10	 0.09
Ce2O3	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.14	 bd	 bd	 0.19	 bd
FeO	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.39	 0.29	 bd	 bd	 0.27	 0.13	 0.11	 bd	 0.08
MnO	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 0.03	 0.02	 bd	 bd	 bd
MgO	 bd	 bd	 bd	 bd	 bd	 bd	 0.11	 bd	 0.06	 bd	 0.75	 0.09	 bd	 0.08	 0.05	 bd	 bd	 0.05
CaO	 40.09	 38.21	 38.10	 32.91	 36.38	 36.49	 20.20	 20.43	 21.94	 18.07	 18.16	 20.89	 19.47	 19.85	 20.63	 19.62	 19.67	 19.52
SrO	 bd	 0.17	 0.09	 0.10	 bd	 0.08	 0.08	 0.09	 0.09	 0.15	 0.08	 0.06	 0.12	 bd	 0.08	 bd	 bd	 bd
BaO	 bd	 0.32	 0.18	 0.33	 0.33	 0.16	 0.79	 1.33	 1.33	 0.54	 0.58	 0.99	 0.79	 1.75	 1.07	 0.82	 0.44	 0.49
Na2O	 bd	 bd	 0.06	 0.04	 bd	 bd	 bd	 bd	 0.05	 0.19	 0.16	 0.04	 bd	 bd	 0.04	 bd	 0.08	 0.09
K2O	 bd	 bd	 bd	 bd	 bd	 bd	 0.07	 bd	 0.05	 0.12	 0.11	 0.03	 bd	 0.03	 0.03	 bd	 0.05	 0.07
SO3	 0.09	 0.24	 0.26	 0.64	 0.22	 0.14	 0.16	 0.24	 0.12	 2.20	 1.50	 0.86	 bd	 0.26	 0.31	 bd	 0.04	 bd
 Total	 100.67	 100.09	 100.96	 101.17	 100.27	 101.03	 100.19	 99.38	 100.17	 101.79	 99.74	 99.81	 99.03	 101.40	 101.46	 100.91	 100.75	 99.55
Si	 1.06	 1.03	 1.13	 0.97	 1.10	 1.11	 1.90	 1.92	 1.92	 2.07	 2.07	 1.94	 2.00	 2.05	 1.94	 2.02	 2.03	 1.90
Ti	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Zr	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Al	 1.96	 2.06	 1.94	 2.34	 2.03	 2.04	 2.12	 2.07	 2.02	 1.95	 1.90	 2.03	 2.01	 1.92	 2.06	 1.99	 1.97	 2.13
Y	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
La	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Ce	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Fe	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.02	 0.01	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.00
Mn	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Mg	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.05	 0.01	 0.00	 0.01	 0.00	 0.00	 0.00	 0.00
Ca	 1.93	 1.86	 1.82	 1.55	 1.74	 1.73	 1.02	 1.04	 1.12	 0.90	 0.92	 1.07	 0.98	 0.99	 1.03	 0.97	 0.97	 0.98
Sr	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Ba	 0.00	 0.01	 0.00	 0.01	 0.01	 0.00	 0.01	 0.02	 0.02	 0.01	 0.01	 0.02	 0.01	 0.03	 0.02	 0.01	 0.01	 0.01
Na	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.02	 0.01	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.01
K	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.01	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
S	 0.00	 0.01	 0.00	 0.01	 0.01	 0.00	 0.01	 0.01	 0.00	 0.08	 0.05	 0.03	 0.00	 0.01	 0.01	 0.00	 0.00	 0.00
∑ cations	 4.97	 4.96	 4.90	 4.87	 4.89	 4.88	 5.07	 5.08	 5.10	 5.06	 5.05	 5.10	 5.01	 5.03	 5.07	 5.00	 5.00	 5.05
No. Oxygen	 7	 7	 7	 7	 7	 7	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8

(Continued on next page)
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In a second association, dmisteinbergite occurs associated 
in a bright and dark lamellae structure with stoichiometric 
Ca1–x(Al,Si)2+xO5 (Table 1; Fig. 3). This phase can accommodate 
up to 21.84 wt% of Al2O3, while it is also BaO-, SO3-, LREE- (up 
to 2.05 wt%), F- (up to 3.91 wt%), and Cl-bearing (Table 1). No 
detectable Raman modes are active for Ca1–x(Al,Si)2+xO5 phase. It 
has also been found in contact to TiN (osbornite; Fig. 3).

Stoichiometric, Mg- and Fe-free, but BaO-, SrO-, and SO3-
bearing gehlenite, Ca2Al2SiO7 (Table 1) has been found bordering 
three moissanite crystals. The studied gehlenite shows Raman 
modes at 182, 221, 248, 310, 632, 658, 798, 914, 982, and 1009 
cm–1 (Fig. 4c), which fits literature data (Sharma et al. 1983; 
Bouhifd et al. 2002). Gehlenite-like composition has been also 
reported from a grain included in moissanite from Luobusa 
(Robinson et al. 2004).

Four other CAS and AS compositions have been measured 
with the microprobe, either occurring as single inclusions or 
associated to dmisteinbergite.

The first mineral is a silica-bearing Ca-aluminate, with the 
stoichiometry of CaAl4–xSixO7. The mineral is also BaO-, SrO-, 
and SO3-bearing (Table 1) and shows weak Raman modes at 
118, 138, 252, 303, 326, 412, 458, and 1125 cm–1. The mineral 
is compositionally comparable to grossite, CaAl4O7 (e.g., Boyko 

and Wisnyi 1958; Weber and Bischoff 1994), but the 
Raman spectrum obtained is not in agreement with 
data reported by Hofmeister et al. (2004).

A second CAS phase has a composition of Ca1–x 

(Al,Si)3+xO6, close to that of the pyroxene kushiroite, 
CaAl2SiO6. This phase also contains BaO, SrO, SO3, 
and traces of LREE (Table 1). It shows weak Raman 
modes at 239, 291–301, 326–347, 546–548, 604, 
622–626, and 966 cm–1 on one grain, and strong 
Raman modes at 531 and 1579 cm–1 on a second 
grain (Fig. 4d).

The third unreported CAS phase has a Ca3–x 

(Al,Si)6+xO14 composition. This phase also bears 
BaO, SrO, SO3, and Ce2O3 (Table 1), and shows main 
Raman modes at 351, 553, and 613 cm–1 (Fig. 4e).

The fourth phase, included as single grain within 
a moissanite crystal, is an Al-silicate; SiO2 averages 
65.9 wt%, while Al2O3 averages 17.4 wt%; the phase 
also contains 3 wt% alkalis, 6 wt% BaO, 2 wt% 
SO3, <2 wt% CaO+MgO, almost 0.9 wt% ZrO2 
and up to 0.53 wt% LREE (Table 1). This phase 
shows main Raman modes at 147, 216, 283, 314, 
461, 535, 576, 671, 984, 1136, 1450, and 1524 cm–1 
(Fig. 4f), with the strongest peak at 461 cm–1, close 
to that of quartz. Oleynikov et al. (1987, Table 2, 
p.158) reported Mg-free alumina-silicate phase with 
a very similar composition, namely (microprobe 
data) SiO2 78.80–93.17 wt%, Al2O3 3.05–11.26 
wt%, K2O 0.77–5.15 wt%, Na2O 0.48–1.98 wt%, 
CaO 0.19–0.41 wt%, FeO 0.21–0.74 wt%, and TiO2 
0.09–0.35 wt%. This hundred-micrometer-sized, 
tabular phase, along with silicides, was found in-
cluded in moissanite from heavy-mineral separates 
from mafic rocks from Russia.

In summary, the tabular, xenomorphic, or drop-
shaped hundred-micrometer-sized CAS and AS 

inclusions in moissanite show exsolution lamellae of the fol-
lowing types: (1) dmisteinbergite (hexagonal modification of 
CaAl2Si2O8; n = 15), in association with either Cax(Al,Si)1–xO3 
(n = 8) or Ca1–x(Al,Si)2+xO5 (n = 4), or even dmisteinbergite alone 
and (2) gehlenite (n = 3); (simplified) CaAl4–xSixO7 (n = 1); Ca1–x 

(Al,Si)3+xO6 (n = 5); Ca3–x(Al,Si)6+xO14 (n = 3); and Al-bearing 
SiO2 (n = 1), mainly as single minerals, either included in, or 
rimming moissanite crystals. All CAS phases are variably en-
riched in Ba, Sr, S, LREE, and Zr (Table 1), and most of them 
show distinctive Raman modes and spectra.

MgO and FeO contents are in all analyzed CAS phases at 
or below the detection limit, with maximum MgO contents of 
0.75 wt% in one analysis of dmisteinbergite, and maximum FeO 
content of 0.39 wt% in another dmisteinbergite analysis. This 
is coherent with literature data predicting iron-free silicates in 
equilibrium with SiC (Mathez et al. 1995; Ulmer et al. 1998).

Discussion

The data demonstrate that the CaAl-silicates inclusions hosted 
in moissanite crystals cannot be synthetic because of the ther-
modynamic incompatibility between the a-modification of SiC, 
above 1900 °C, and condensation temperatures of potentially 

Table 1.—Continued
	 Ca1–x(Al.Si)2+xO5	 Al-bearing	 Ca3–x(Al.Si)6+x

		  SiO2	 SiO14

No. of	 244	 244	 244	 272	 272	 272	 220	 220	 49
  hosting SiC
No. of µ-probe	 2	 3	 4	 40	 41	 42	 13	 14	 65
SiO2	 56.75	 49.40	 51.59	 61.88	 59.03	 62.31	 65.39	 66.39	 43.04
TiO2	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
ZrO2	 0.21	 0.34	 0.34	 bd	 bd	 bd	 0.90	 0.86	 bd
Al2O3	 15.45	 14.97	 14.85	 20.10	 21.84	 20.01	 17.65	 17.22	 25.38
Y2O3	 0.52	 1.05	 0.98	 bd	 0.11	 bd	 bd	 bd	 bd
La2O3	 0.14	 0.18	 0.36	 bd	 bd	 bd	 bd	 bd	 bd
Ce2O3	 0.36	 0.76	 0.72	 0.08	 0.09	 bd	 0.37	 0.44	 0.11
FeO	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd	 bd
MnO	 bd	 0.11	 0.10	 bd	 bd	 bd	 bd	 bd	 bd
MgO	 0.33	 0.45	 0.48	 0.06	 0.10	 0.07	 0.14	 0.17	 0.43
CaO	 19.49	 23.08	 23.07	 14.43	 16.12	 14.08	 1.67	 1.70	 27.37
SrO	 bd	 bd	 bd	 0.07	 bd	 bd	 bd	 bd	 0.81
BaO	 2.94	 2.77	 2.94	 1.24	 1.19	 1.19	 5.97	 6.04	 1.00
Na2O	 bd	 0.09	 0.12	 0.20	 0.19	 0.20	 0.81	 0.71	 0.28
K2O	 0.46	 0.28	 0.24	 0.20	 0.17	 0.20	 2.01	 2.21	 0.06
SO3	 1.10	 1.99	 1.94	 2.15	 2.01	 2.00	 3.02	 2.91	 0.21
F	 1.60	 3.91	 3.80	 na	 na	 na	 na	 na	 na
Cl	 0.04	 0.05	 bd	 na	 na	 na	 na	 na	 na
 Total	 99.39	 99.43	 101.53	 100.41	 100.85	 100.06	 97.93	 98.65	 98.69
Si	 1.75	 1.64	 1.66	 1.77	 1.69	 1.77	 3.15	 3.17	 3.74
Ti	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Zr	 0.00	 0.01	 0.01	 0.00	 0.00	 0.00	 0.02	 0.02	 0.00
Al	 0.56	 0.58	 0.56	 0.68	 0.74	 0.67	 1.00	 0.97	 2.60
Y	 0.01	 0.02	 0.02	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
La	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Ce	 0.00	 0.01	 0.01	 0.00	 0.00	 0.00	 0.01	 0.01	 0.00
Fe	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Mn	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
Mg	 0.02	 0.02	 0.02	 0.00	 0.00	 0.00	 0.01	 0.01	 0.06
Ca	 0.64	 0.82	 0.80	 0.44	 0.50	 0.43	 0.09	 0.09	 2.55
Sr	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.04
Ba	 0.04	 0.04	 0.04	 0.01	 0.01	 0.01	 0.11	 0.11	 0.03
Na	 0.00	 0.01	 0.01	 0.01	 0.01	 0.01	 0.08	 0.07	 0.05
K	 0.02	 0.01	 0.01	 0.01	 0.01	 0.01	 0.12	 0.13	 0.01
S	 0.03	 0.05	 0.05	 0.05	 0.04	 0.04	 0.11	 0.10	 0.01
∑ cations	 3.06	 3.20	 3.18	 2.97	 2.95	 2.95	 4.70	 4.69	 9.09
No. Oxygen	 5	 5	 5	 5	 5	 5	 8	 8	 14
Note: bd = below detection; na = not analyzed.
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present CAS phase, below 1500 °C (Zhou and Telle 2010). More-
over, most of the analyzed CAS phases included in moissanite 
are LREE-bearing, in some cases also fluorine-bearing. This is 
definitely not compatible with the Acheson synthesis conditions. 
One particular phase, containing >66 wt% SiO2 and showing a 
close-to-quartz Raman spectrum (Fig. 4f), might have existed 
in the Acheson mixture at room conditions, but could not have 
survived as inclusion within SiC without having been reduced 
to carbide or silicide. As already stated, neither CAS nor any 
kind of oxide is reported from the synthetic SiC literature. The 
only phases reported in synthetic material are silicides, boron-
carbides, and amorphous carbon precipitates (e.g., More et al. 
1986; Backhaus-Ricoult et al. 1993; Munro 1997).

The association of CAS phases as inclusions in moissanite 
opens new questions about the P-T conditions of formation. Given 
that our moissanite occurrence is comparable to occurrences in 
kimberlites and other diamond-bearing assemblages (see introduc-
tion), it is obvious to claim pressure as the stabilizer “ingredient” of 
the observed CAS association. We will therefore review whether 
the here-reported CAS phases are ultrahigh-pressure phases.

The CaO-Al2O3-SiO2 system
The liquidus surface of the well-studied ternary CaO-Al2O3-

SiO2 system (e.g., Osborn and Muan 1960; Mao et al. 2006) at 
ambient pressure is shown in Figure 5. The plotted points are 
analyses of CAS phases found in this study, in weight percent. 
Coexisting phases are connected with tie lines.

Gehlenite analyses plot in the stability field of gehlenite and 
dmisteinbergite in the stability field of anorthite, while all the 
other compositions do not fit any of the ambient-pressure stability 
fields. These latter are therefore either quenched melt inclusion, 
or they represent high-pressure (HP) phases that may have crys-
tallized from melt inclusions. The former option can be discarded 
because Cax(Al,Si)1–xO3, Ca1–x(Al,Si)3+xO6, Ca3–x(Al,Si)6+xO14, 
and the Al-bearing SiO2 phases show active Raman modes with 
sharp peaks (Fig. 4), indicative of crystallinity. However, not all 
Raman spectra (Fig. 4) do fit known phases in the CAS system.

Dmisteinbergite was found in pyrometamorphic rocks from 
the Chelyabinsk coal basin, Southern Urals (Sokol et al. 1998), 
in pseudotachylyte from the Gole Larghe Fault, Italian Alps 
(Nestola et al. 2010), and very recently also from the Allende 
meteorite (Ma et al. 2013). Dmisteinbergite crystallizes from a 
rapidly quenched silicate melt at ambient pressure at 1200–1400 
°C instead of anorthite (Abe et al. 1991; Daniel et al. 1995). It 
is not clear whether very low oxygen-fugacity conditions help 
stabilize the metastable hexagonal and orthorhombic CaAl2Si2O8 
polymorphs (Sokol et al. 1998, and reference therein). The upper 
P stability limit of dmisteinbergite is not reported in the literature.

Anorthite has been used as starting material in numerous HT-
HP experiments aimed at characterizing Ca-Al-silicate stability 
in the upper mantle (see below). Anorthite remains stable up to 
17.5 GPa and 1500 °C (Gautron and Madon 1994), above which 
it decomposes to an assemblage of “distorted” anorthite with an 
hollandite-type HP structure, Al-rich CaSiO3 with a perovskite-
structure, and kyanite, according to the following reaction:

CaAl2Si2O8 → Ca1.33Al1.33Si2.33O8 + (Ca0.80,Al0.20)(Si0.80Al0.20)O3 + 
Al2SiO5.	  (1)

Gehlenite is a highly refractory mineral occurring in HT meta-
morphic peralumineous rocks that underwent calcium metaso-
matism and HT contact aureoles in impure limestone. The nearly 
pure, Fe- and Mg-free end-member has been mainly reported 
from carbonaceous chondrites (e.g., Zhang and Hsu 2009; Si-
mon and Grossman 2011). Experimental work has shown that 
the assemblage gehlenite, anorthite, and liquid is stable up to 
2.5 GPa and 1400 °C, above which it breaks down to grossular, 
Ca3Al2Si3O12 (Surkov and Doroshev 1998).

Grossular has been also extensively used as a starting material 
in HP-HT experiments, recently reviewed by Kawai and Tsuchiya 
(2012), to constrain stability fields of Ca- and Al-hosting silicates 
in subducted sediments and continental rocks down to upper 
mantle and greater depths. Ahmed-Zaïd and Madon (1995) used a 
diamond-anvil cell (DAC) and transmission electron microscopy 
(TEM) to study the breakdown of pure, natural grossular at 40 
and 50 GPa according to the reaction:

Ca3Al2Si3O12 → 2(Ca0.92,Al0.08)(Si0.92,Al0.08)O3 + CaAl2SiO6.	 (2)

Experiments were conducted at temperatures above 1100 ±400 K. 
The 8 mol% Al2O3-bearing CaSiO3 phase was found to be amor-
phous, while CaAl2SiO6 was crystalline, but did not show the 
Ca-tschermakite pyroxene structure. At estimated temperatures 
of 2200 ±800 K, they reported the following reaction:

Ca3Al2Si3O12 → 2CaSiO3 (Al-rich) + Al2SiO5 + CaO. 	 (3)

In these experiments, the 9 mol% Al2O3-bearing CaSiO3 phase 
was amorphous, while Al2SiO5 was a new polymorph with titanite 
structure, along with crystalline CaO.

Yusa et al. (1995) conducted DAC experiments at 30.2 GPa 

Figure 5. Ternary plot of the CAS analyses, in wt%, highlighting the 
presence of eight different compositions. In the background, the liquidus 
surface of SiO2-CaO-Al2O3 system at ambient pressure (Osborn and 
Muan 1960) is shown. The arrows indicate the direction of downward 
temperature gradient. In the cement chemistry jargon, “C” stands for 
CaO, “A” for Al2O3, and “S” for SiO2 (example: CAS2 = CaO + Al2O3 
+ 2SiO2 = CaAl2Si2O8 = anorthite). (Color online.)



DI PIERRO AND GNOS: CAS IN MOISSANITE 77

and 1000–1500 °C and reported the appearance of a new, un-
quenchable garnet polymorph of grossular composition, but in 
situ X‑ray diffraction showed that the phase has a Pbnm ortho-
rhombic symmetry comparable to MgSiO3 perovskite.

Takafuji et al. (2002) used a multi-anvil press (MAP) coupled 
to synchrotron m-XRD and analytical TEM to study in situ and 
quenched reaction products of synthetic grossular at 23–25 
GPa and 1000–1600 K. In the quenched experiments, they 
found different associations of 8–25 mol% of an Al2O3-bearing 
CaSiO3 phase alternating with lamellae of amorphous material 
and a “LiNbO3-type” perovskite-structured phase. The authors 
noted that the Al solubility in CaSiO3-perovskite decreased 
with increasing temperature (see also Kurashina et al. 2004; 
Komabayashi et al. 2007), and suggested that under unquenched 
conditions the amorphous phase had cubic symmetry, while the 
“LiNbO3-type” was orthorhombic.

By studying the potential incorporation of uranium and 
thorium in silicates at mantle P-T conditions and using glass of 
grossular composition as starting material, Gréaux et al. (2009, 
2011a, 2012) carried out DAC and MAP experiments at 19–26 
GPa and 700–2000 K. Run products were characterized either 
in situ by m-XRD or in quenched experiments by TEM. Gréaux 
and coworkers produced Al-rich CaSiO3 perovskite containing 
10.6–24.2 wt% Al2O3. In their runs, excess alumina was accom-
modated in the CAS-phase CaAl4Si2O11.

CaAl4Si2O11 was first reported by Irifune et al. (1994) while 
studying the decomposition of continental sediments at P-T 
conditions of the Transition Zone. Hirose et al. (1999) found as 
a liquidus phase of mid-ocean ridge basalt (MORB) exposed to 
26–27 GPa and approximately 2500 K, respectively. A related 
Na-bearing CAS-phase, (CaxNa1–x)Al3+xSi3–xO11, was also re-
ported as natural mineral occurring in melt pockets of the heavily 
shocked martian meteorite NWA 856 (Beck et al. 2004). Zhai and 
Ito (2008) studied the P-T stability of this CAS-phase at 10–23 
GPa and 1000–1600 °C. CaAl4Si2O11 was found stable above 10 
GPa and 1500 °C, with the boundary of its breakdown products 
grossular + corundum + stishovite showing a negative dP/dT 
slope. The upper stability of CaAl4Si2O11 lies at approximately 
30 GPa and 2000 K, where it dissociates to an assemblage of 
Al-rich CaSiO3 with perovskite structure, corundum, and stisho-
vite (Ishibashi et al. 2008; Gréaux et al. 2011b). Gautron et al. 
(1999) refined the structure of their CAS-phase as CaAl4Si2O11 
and found it isostructural with BaFe4Ti2O11.

Another important HP-HT CAS-phase is CaAl12Si4O27, 
experimentally synthetized at 14 GPa and 1550 °C by Gray 
et al. (2000). Gray et al. (2000) considered their CAS-phase 
CaAl12Si4O27 to be isostructural with BaFe11Ti3O23. These latter 
authors suggested that the BaO-Fe2O3-TiO2 ambient-pressure 
system might be an analog to the CaO-Al2O3-SiO2 high-pressure 
one, where the silicon is sixfold coordinated in a rutile-type 
structure. Given the complexity of the BaO-Fe2O3-TiO2 system 
with at least 17 known phases (Vanderah et al. 1996, and refer-
ence therein), there is still a high probability to find additional 
new phases in the HP CaO-Al2O3-SiO2 system (Gautron et al. 
1999; Gray et al. 2000).

The Al-poor HP-HT CaSiO3 system is well constrained, too 
(Kanzaki et al. 1998; Wang and Weidner 1994; Gasparik et al. 
1994; Swamy and Dubrovinsky 1997; Shim et al. 2000; Akaogi 

et al. 2004; Komabayashi et al. 2007). LP-HT wollastonite, 
CaSiO3, and its HT polymorph pseudo-wollastonite, Ca3Si3O9 
(Seryotkin et al. 2012), undergo displacive phase transition to 
Ca3Si3O9 with walstromite-structure at around 3–4 GPa (Joswig 
et al. 2003; Barkley et al. 2011; Liu et al. 2012). With increasing 
pressure, walstromite-structured Ca3Si3O9 dissociates at 9–11 
GPa to larnite, b-Ca2SiO4, and titanite-structured CaSi2O5 (An-
gel et al. 1996, 1997, 1999; Kudoh and Kanzaki 1998; Stebbins 
and Poe 1999; Schoenitz et al. 2001; Sueda et al. 2006). Larnite 
and CaSi2O5 are thought to be important REE-carriers at mantle 
depths (Wang et al. 2000; Dörsam et al. 2009). Experimental 
work also confirmed the assemblage walstromite-structured 
Ca3Si3O9, b-larnite + titanite-structured CaSi2O5 in natural dia-
monds from Guinea (Joswig et al. 1999; Stachel 2001; Nasdala 
et al. 2003; Brenker et al. 2005). Above 14–15 GPa and 1600 
°C, this assemblage further recomposes to more compact CaSiO3 
with perovskite-structure.

At even higher P and by adding alumina to the system, the 
CaSiO3 perovskite-structured phase is replaced by a rhombohedral 
Ca2AlSiO5.5 phase that possesses ordered oxygen defects. It is stable 
at 16 GPa and 1973 K (Bläss et al. 2007; Kojitani et al. 2009).

By increasing the Al2O3/CaO ratio, kushiroite, CaAl2SiO6, a 
Mg- and Fe-bearing pyroxene containing up to 88 mol% of Ca-
tschermakite becomes stable. The Ca-tschermakite end-member 
P-T stability field has been constrained experimentally above 1.8 
GPa and 1300 °C (Okamura et al. 1974; Ahmed-Zaïd and Madon 
1995; Surkov and Doroshev 1998). Kushiroite was found in the 
meteorites ALH 85085 (Kimura et al. 2009), Allende, Murray, 
and other carbonaceous chondrites (Ma et al. 2009) that did not 
undergo high-pressure metamorphism.

The Raman spectra of dmisteinbergite and gehlenite fit those 
of literature (Nestola et al. 2010; Bouhifd et al. 2002). However, 
a direct link between X‑ray characterized HP-HT CAS phases 
and our Raman-constrained data is not yet made. The collected 
Raman spectra of Ca1–x(Al,Si)3+xO6 (Fig. 4d) do not fit that of 
kushiroite (Kimura et al. 2009) nor Ca-tschermakite (Sharma et 
al. 1983). Similarly, the CaAl4–xSixO7 Raman spectra do not fit 
grossite, CaAl4O7 (Hofmeister et al. 2004).

Based on their compositions, however, there are striking 
analogies between the here-reported CaAl-silicates and the 
above-reported HP-HT phases from the literature. For instance, 
the Cax(Al,Si)1–xO3 phase reported here contains up to 25 mol% 
of Al2O3 (Table 1), which corresponds to the maximum solubility 
of alumina within the perovskite-structured CaSiO3 of Takafuji et 
al. (2002) or Gréaux et al. (2009, 2011a, 2011b). Ca1–x(Al,Si)3+xO6 
compositions reported in Table 1 are closely stoichiometric Ca-
tschermakite. The Ca1–x(Al,Si)2+xO5 phase, which contain up to 
2 wt% REE, ~3% BaO, ~4 wt% F, >1.7 wt% SO3, and 0.34 wt% 
ZrO2 is comparable to the data and predictions of Dörsam et al. 
(2009) suggesting that these phase can be the mantle deposi-
tory for large ion lithophile elements (LILE) and LREE. Our 
Ca3–x(Al,Si)6+xO14 phase, furthermore, written with its actual 
stoichiometry derived from its microprobe analysis (Table 1, 
no. 65), namely Ca2.55Al2.60Si3.74O14, might recall closely phase 
Ba3Fe2Ti4O14 reported by Vanderah et al. (1996) and refined in the 
C2/m space group, with which it might be isostructural. Likewise 
the HP phase CaAl12Si4O27 of Gray et al. (2000) is isostructural 
with BaFe11Ti3O23, and CaAl4Si2O11 of Gautron et al. (1999) is 
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isostructural with BaFe4Ti2O11 (see previous discussion).
The short review provided above considered single, stoi-

chiometric, either quenched or in situ equilibrated minerals. 
We recall that the here-reported CAS inclusions in moissanite 
mainly consist of two phases, where one phase forms exsolution 
lamellae in a second. In the literature (i.e., Takafuji et al. 2002; 
Yamamoto et al. 2009; Gréaux et al. 2011a, 2011b; Nishi et al. 
2011) such a textural relationship is interpreted as retrograde 
transformation in association with volumetric changes occurring 
during upwelling and decompression (e.g., Alifirova et al. 2012, 
and reference therein).

This, in turn, means that the parental minerals that transformed 
to the here observed associations (modal abundance in parenthe-
ses): (a) dmisteinbergite (~50 vol%) + Cax(Al,Si)1–xO3 (~50 vol%; 
Fig. 2), (b) or dmisteinbergite (~50 vol%) + Ca1–x(Al,Si)2+xO5 
(~50 vol%; Fig. 3) should have been even denser phases, whose 
stoichiometry might be found within the HP-HT CaO-Al2O3-
SiO2 system.

Further combined structural and Raman studies of the pre-
sented phases, as well as experimental work on hypothetical 
compositions are strongly needed to explore the CaO-Al2O3-SiO2 
system at high pressures.

Hypotheses on moissanite and CAS origins
Several findings of moissanite have been reported, either as 

genetically linked to sub-surface phenomena, such as impact 
craters (i.e., Moissan 1905; Hough et al. 1995) or forest fires 
(Sameshima and Rodgers 1990), or predicted as a thermody-
namically stable phase growing during lightning strikes (Essene 
and Fisher 1986). Most moissanite occurrences, however, have 
been reported from rocks of deep-mantle provenance, such as 
kimberlites, lamproites, and peridotites (ophiolites), and their 
narrow association with diamonds has been unambiguously 
proved (Mathez et al. 1995; Trumbull et al. 2009; Shiryaev et 
al. 2011, and references therein).

Although authors often speculate about the enigmatic and 
unsolved origin of natural, terrestrial silicon-carbide, there is a 
general strong consensus on two points:

(1) Moissanite stability is restricted to extremely low oxygen 
fugacity (fO2) conditions, computed or experimentally determined 
at five to six log units below the iron-wüstite (IW) oxygen buf-
fer (Essene and Fisher 1986; Mathez et al. 1995; Ulmer et al. 
1998; Dobrzhinetskaya and Green 2007; Takahashi et al. 2013; 
Shiryaev and Gaillard 2014; Schmidt et al. 2014).

(2) Moissanite shows strongly depleted d13C values, ranging 
from –18 to –35‰ for ophiolite suites, from –21 to –31‰ for 
the Turkish pebble suite (Trumbull et al. 2009), and from –22 to 
–30‰ for the kimberlitic suites of Marshintsev (1990), Leung et 
al. (1990), and Mathez et al. (1995). These values are in strong 
contrast with d13C values of peridotitic and the large majority 
of eclogitic diamond suites (Shirey et al. 2013), plotting around 
–5‰ and considered as the “normal” mantle range. The mois-
sanite values, instead, better fit the d13C values of diamonds 
from ophiolites, ranging –18 to –28‰ (Yang et al. 2014). These 
diamonds, very often associated to moissanite, are interpreted as 
originated from the Transition Zone (Yang et al. 2014).

Based on these facts, several hypotheses for a deep-mantle 
origin of moissanite and hence also the CAS and AS inclusions 

in moissanite they contain is proposed. Mathez et al. (1995) 
proposed that moissanite might have an upper mantle origin, 
where it might be confined to microenvironments with fO2 
conditions lower than IW values. They also proposed that the 
origin of moissanite might be genetically linked to subduction 
of biogenic carbon. This scenario would be consistent with the C 
and N isotopes signature, while reducing conditions necessary for 
SiC formation would be provided by serpentinization processes 
(Mathez et al. 1995; Ulmer et al. 1998).

Moissanite with CAS inclusions could have a pristine origin 
from primordial Earth and would be located mostly in the Lower 
Mantle. This hypothesis was first raised by Mathez et al. (1995) 
based on the assumptions that Earth Core formation required 
lower-than-IW fO2 conditions (see also Hin et al. 2014) that cur-
rent fO2 conditions of the lower mantle are not well-known, and 
that H-and L-ordinary chondrites and achondrites show d13C 
values of –20 to –32‰. The pristine moissanite origin hypoth-
esis has been also suggested by Hugh Rollinson (pers. comm. 
2009, in Trumbull et al. 2009), based on analogy of d13C values 
of 12 martian meteorites of –20 ±4‰ (Grady et al. 2004) and 
the average values of terrestrial moissanite. This scenario was 
recently supported by Horita and Polyakov (2015) using carbon 
budget modeling.

More recently, Hazen et al. (2013) proposed that moissanite 
might have formed during the giant impact formation of the 
Earth’s Moon since mantle material was exposed to vacuum of 
space, simultaneously to very HT regimes.

Even though we still miss many experimental data to con-
strain with certainty the high-pressure origin of the moissanite-
bearing phases studied here, Ca-Al-silicates found as inclusions 
in SiC described in this study are a unique proxy to tentatively 
explain a possible origin. We speculated about their HP-HT 
origin already, but there is another striking feature that charac-
terizes the association of CAS-phases with SiC. All analyzed 
phases are unexpectedly Mg-free. Moissanite, silicon metal and 
iron-silicides previously characterized in the same sample (Di 
Pierro et al. 2003) are all also Mg-free. This strongly contrasts 
with the surrounding brucite-dominated groundmass of the 
sample, crowded with MgFe-silicates and chromian spinel. This 
would suggest that the reduced phases, moissanite, silicon, and 
silicides, and associated Mg-free CaAl-silicates form a separate 
paragenesis, possibly not in equilibrium with the surrounding 
ultramafic matrix.

Dmisteinbergeite (Ma et al. 2013), kushiroite (Kimura et al. 
2009), and ghelenite (Nomura and Miyamoto 1998; Krot et al. 
2004; Zhang and Hsu 2009; Simon and Grossman 2011) have 
all been extensively reported from Ca-Al-inclusions (CAIs) in 
chondrites, and were interpreted as pristine minerals witnessing 
the early stages of formation of the Solar System. Moreover, 
traces of micrometer-sized, cubic silicon-carbide grains of preso-
lar origin have been extensively reported from carbonaceous 
chondrites as well (see Daulton et al. 2002, for a review). One 
could therefore speculate that during the early accretion steps of 
our planet, significant traces of refractory moissanite and CaAl-
silicates might have coexisted (Hazen et al. 2008; Marakushev 
et al. 2013) and become commonly scattered at different mantle 
depths. Kimberlite-like volcanism might have ultimately brought 
up to surface these double, composite parageneses. This scenario 
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would fit simultaneously the previously listed constraints such 
as the-lower-than-IW fO2 conditions, the strongly depleted d13C 
values not fitting the mantle values of peridotitic and most of 
eclogitic diamonds but those of pristine meteorites. However, 
moissanite grains are only known from unequilibrated primitive 
chondrites but not from higher-grade metamorphic, equilibrated 
chondrites (Brearley and Jones 1998). For this reason, it seems 
thermodynamically impossible that such tiny moissanite grains of 
meteoritic origin could have survived in the hot terrestrial mantle.

The Si isotope distribution between moissanite, silicon metal 
and silicides, and of course CAS phases, would be helpful to 
discern between a common origin or not for this association, and 
REE pattern of the CaAl-silicates could be helpful to support 
such a scenario (Shiryaev et al. 2011).

Implications

Hundred-micrometer-sized grains consisting of crystalline 
Ca-Al-silicates and Al-silicates have been found as inclusions 
in moissanite that has lower mantle d13C isotopic signature 
(Trumbull et al. 2009; Horita and Polyakov 2015), providing 
an additional criterion to distinguish natural moissanite from 
synthetic SiC.

A deep-mantle origin is supported by the fact that to-
gether with dmisteinbergite and gehlenite, the unreported 
phases Cax(Al,Si)1–xO3, Ca1–x(Al,Si)3+xO6, Ca1–x(Al,Si)2+xO5, 
CaAl4–xSixO7, Ca3–x(Al,Si)6+xO14, and Al-bearing SiO2 are found. 
The exsolution relationship, moreover, indicates that the parental 
minerals might have been even denser phases of the CAS system. 
Moreover, there are striking analogies between the CAS inclu-
sions and HP-HT CAS phases reported in the literature. Whereas 
significant amounts of Ba, S, LREE, and in some of them also F, 
Cl, alkalis, and Zr, may have stabilized the CAS-phases to lower 
pressure conditions, they confirm predictions of Dörsam et al. 
(2009) that such minerals could be important sinks for LREE 
and LILE in the deep mantle.

Several high-pressure phases of the CaO-Al2O3-SiO2 system 
are isostructural (e.g., Gray et al. 2000) with 1 of the 17 known 
members of the low-pressure BaO-Fe2O3-TiO2 system (e.g., 
Vanderah et al. 1996). Considering that in the studied sample 
alone five unknown minerals of the CaO-Al2O3-SiO2 system are 
present, it seems likely that exploration of the CaO-Al2O3-SiO2 at 
high pressure will lead to the discovery of additional CAS phases.
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