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Abstract
The diverse suite of trace elements incorporated into apatite in ore-forming systems has important 

applications in petrogenesis studies of mineral deposits. Trace element variations in apatite can be 
used to distinguish between fertile and barren environments, and thus have potential as mineral ex-
ploration tools. Such classification approaches commonly employ two-variable scatterplots of apatite 
trace element compositional data. While such diagrams offer accessible visualization of compositional 
trends, they often struggle to effectively distinguish ore deposit types because they do not employ all 
the high-dimensional (i.e., multi-element) information accessible from high-quality apatite trace ele-
ment analysis. To address this issue, we use a supervised machine-learning-based approach (eXtreme 
Gradient Boosting, XGBoost) to correlate apatite compositions with ore deposit type, utilizing such 
high-dimensional information. We evaluated 8629 apatite trace element data from five ore deposit 
types (porphyry, skarn, orogenic Au, iron oxide copper gold, and iron oxide-apatite) along with un-
mineralized magmatic and metamorphic apatite to identify discriminating parameters for the individual 
deposit types, as well as for mineralized systems. According to feature selection, eight elements (Th, 
U, Sr, Eu, Dy, Y, Nd, and La) improve the model performance. We show that the XGBoost classifier 
efficiently and accurately classifies high-dimensional apatite trace element data according to the ore 
deposit type (overall accuracy: 94% and F1 score: 89%). Interpretation of the model using the SHAPley 
Additive exPlanations (SHAP) tool shows that Th, U, Eu, and Nd are the most indicative elements for 
classifying deposit types using apatite trace element chemistry. Our approach has broad implications 
for the better understanding of the sources, chemistry, and evolution of melts and hydrothermal fluids 
resulting in ore deposit formation.
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Introduction
To develop a quantitative, process-based model for ore-

forming systems, a characterization of melt and hydrothermal 
fluid source, composition and evolution is required (e.g., Anders-
son et al. 2019). Various minerals in ore-forming systems can 
constrain the conditions of mineralization based on variations in 
their mineral chemistry, thus recording the evolution of melts and 
hydrothermal fluids and yielding constraints on the metallogenic 
processes (Clark and Williams-Jones 2003; Pisiak et al. 2017; 
Chapman et al. 2021; Qiu et al. 2021). As a common accessory 
mineral in igneous, metamorphic, and clastic sedimentary rocks, 
apatite has a broad range of applications in the geosciences, 
including thermochronology studies to investigate tectonic 

unroofing (Fitzgerald et al. 1991), fault slip rates (Brichau et al. 
2006), landscape evolution (Braun et al. 2006), petroleum sys-
tem maturation (Burtner et al. 1994), and the record of volatile 
budgets and volcanic eruption triggering (Stock et al. 2016). The 
structure of apatite also facilitates the substitution of more than 
half the stable members of the periodic table as trace elements 
(Hughes 2015), including the rare earth elements and Sr, Y, Th, 
and U (Sha and Chappell 1999; Chew et al. 2011; Zhou et al. 
2022a). Apatite trace element chemistry thus has important ap-
plications in igneous and metamorphic petrogenesis studies and 
in improving the understanding of ore deposit formation (Chu et 
al. 2009; O’Sullivan et al. 2020; Yu et al. 2021, 2022).

Previous studies that have employed apatite trace element 
chemistry to classify protolith rock type or fertility have typically 
employed binary or ternary discrimination diagrams with the 
variables being apatite trace element abundances or elemental 
ratios. Belousova et al. (2002) analyzed trace elements in apatite 
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from various common rock types and employed plots of Sr vs. Y 
and Mn, (Ce/Yb)cn vs. the sum of the REE, and Y vs. Eu/Eu* to 
identify fields of apatite compositions from different rock types. 
Bouzari et al. (2016) used cathodoluminescence combined with 
trace element compositions to discriminate trace element varia-
tions due to alteration linked to the ingress of hydrothermal fluids. 
Mao et al. (2016) evaluated trace element compositions in apatite 
from multiple deposit types and suggested several discrimination 
diagrams for the division of deposit types based on apatite trace 
element chemistry. O’Sullivan et al. (2020) applied composi-
tional statistics, classification, and a machine learning classifier 
to apatite trace element compositional data and generated binary 
plots that discriminated between several types of igneous and 
metamorphic rocks. Zhou et al. (2022b) used a big data approach 
to investigate variations in apatite trace element chemistry and 
showed that an Eu/Y vs. Ce diagram best discriminates apatite 
crystallized from different host rock types. However, while 
two-variable scatterplots or three-variable ternary diagrams of-
fer easy and convenient visualization of discrimination trends, 
they can often fail to rigorously trace the sources, chemistry, and 
evolution of melts and hydrothermal fluids based on variations 
in apatite trace element chemistry (Li et al. 2015; Wang et al. 
2021; Zhong et al. 2021). The first reason is that apatite has a 
complex chemistry with high partition coefficients for many trace 
elements, and trace element partition coefficients in apatite also 
differ significantly with varying temperature, pressure, and melt 
compositions (Prowatke and Klemme 2006). The range of pos-
sible substitutions in both anion and cation sites and significant 
tolerance to structural distortion and chemical substitution leads 
to highly diverse trace element and minor compositions. Another 
reason is the inherent difficulty of discrimination diagrams re-
sulting in low classification accuracy. Although discrimination 
diagrams can have a robust geochemical basis, the discrimination 
fields themselves are defined based on statistics (Pearce 1996). 
While the geochemical underpinnings of discrimination diagrams 
may be well understood, they are typically not sufficiently well 
constrained to accurately predict absolute elemental abundances 
for chemically complex systems (Snow 2006). In addition, 
while an individual apatite trace element analysis can yield the 
abundances of tens of trace elements, discrimination diagrams 
typically only use the information from two or three variables 
(element contents and element ratios). Diagnostic geochemical 
signatures from apatite trace element data may not be effectively 
extracted from these limited numbers of variables, potentially 
leading to different types of apatite not being discriminated 
between or, even worse, misclassified.

High-dimensional analysis methods using machine learning 
can overcome these challenges. As a rapidly growing approach 
to analyzing high-throughput experimental data in novel ways, 
machine learning focuses on the underlying relationships 
between features (measurable properties) and research targets 
(Jordan and Mitchell 2015). In recent years, it has been suc-
cessfully applied to a diverse suite of classification challenges 
on high-dimensional data sets in the geosciences (Petrelli and 
Perugini 2016; Schönig et al. 2021; Zhong et al. 2021; Wang et 
al. 2022). These include estimating pre-eruptive temperatures 
and pressures using clinopyroxene-melt (Petrelli et al. 2020), 
evaluating the occurrence of H diffusion in the clinopyroxene 

phenocrysts of basaltic magma (Chen et al. 2021), proposing 
and improving thermobarometry for different magma types 
[biotite-bearing magma (Li and Zhang 2022); amphibole-bearing 
magma (Higgins et al. 2022); clinopyroxene-bearing magma 
(Jorgenson et al. 2022)], and distinguishing S-, I-, and A-type 
granites (Gion et al. 2022).

In this study, we have compiled a trace element data set 
comprising 8629 apatite analyses from known mineralization 
types and ore-barren magmatic rocks from published literature 
to train and test the classification model. After comparing four 
commonly employed machine learning algorithms, we chose 
a scalable end-to-end tree boosting system called XGBoost 
as the optimal algorithm to tune and yield the final classifiers. 
XGBoost is an open-source machine-learning algorithm that 
combines “weak classifiers” to form “strong classifiers” based 
on a decision tree with gradient boosting (Chen and Guestrin 
2016). It provides a rapid and highly accurate approach to clas-
sifying high-dimensional data, such as distinguishing between 
ore-fertile and ore-barren provenance and classifying ore-fertile 
environments in this study. To address the black box problem 
commonly attributed to machine learning algorithms resulting 
from their potential opacity, we employed the SHAPley Addi-
tive exPlanations (SHAP) visualization tool (Lundberg and Lee 
2017) that makes a machine learning model more explainable 
by visualizing its output. SHAP is a game theoretic method and 
applying it reveals the most diagnostic trace elements in apatite 
for classifying ore deposit types, while also revealing the variable 
geochemical behavior of different elements in ore deposit types. 
Our results demonstrate strong correlations between high-dimen-
sional apatite trace-element geochemical data and ore deposit 
type, thus furthering our knowledge of ore-forming systems, and 
have broad implications for understanding the sources, chemistry 
and evolution of melts and hydrothermal fluids.

Database
For the compilation of the apatite trace element data set, 

8629 analyses from 1685 rock samples were retrieved from 245 
publications using the global petrological open-access database 
GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/). Apatite 
trace element compositions from these studies include data from 
five common ore deposit types located worldwide, including 
porphyry, skarn, orogenic Au, iron-oxide copper gold (IOCG), 
and iron-oxide apatite (IOA or Kiruna type) (Fig. 1). Apatite trace 
element compositions were collected from various unmineral-
ized (barren) magmatic and metamorphic rocks to identify any 
systematic differences between apatite from fertile and barren 
systems. Unmineralized samples in the database comprise both 
wall rocks from the respective mineral deposits but also include 
non-mineralized regions. As an example, three different types 
of quartz monzonite porphyry from Jia et al. (2020) were in-
corporated in our database. Two samples (PD02 and BR04) are 
ore-fertile samples containing sulfide veins, while sample PD01 
is an ore-barren quartz monzonite porphyry containing minimal 
sulfide. Detailed information on the apatite analyses incorporated 
in the database is provided in Online Materials1 Table S1.

Different experimental LA-ICP-MS procedures and protocols 
employed in the 245 publications result in a diverse suite of trace 
elements in the compiled data set. The 14 most commonly analyzed 

http://georoc.mpch-mainz.gwdg.de/georoc/
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trace elements—La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Lu, Sr, Y, 
Th, and U—were used to provide a consistent and optimized data 
set. The data set includes values below the detection limit (bdl) or 
values that were not reported. To improve the quality of the data set, 
bdl analyses were replaced by a value of half of the detection limit 
(Zhong et al. 2021). Ultimately the data set was reduced to 4085 
analyses from 249 individual samples (unmineralized magmatic 
apatite: 148; porphyry: 29; skarn: 35; orogenic Au: 15; IOCG: 
13; IOA: 9) for further investigation by the different machine 
learning methods (Table 1). Figure 2 provides a compilation of 

the apatite trace element data based on deposit type and individual 
deposits. Apatite from IOA deposits has the highest La and Th 
contents, while IOCG apatite has the lowest Sr (Figs. 2a and 2b). 
These diagrams show that the variation in concentration of some 
individual elements can distinguish apatite from different deposit 
types to a certain extent. However, most trace element ranges still 
overlap and are thus not entirely diagnostic. Therefore, although 
deposit type is unlikely to be identified using binary or ternary 
diagrams, the partial separation observed in some of the apatite 
compositional data implies that machine learning approaches in 
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Figure 1. Locations of apatite samples investigated in this study. (a) The 245 publications with apatite compositional data cover 49 countries 
on six continents. Countries are colored according to the number of apatite trace element data (orange high, green low). (b) Pie chart of continent 
distribution. (c) Pie chart of deposit type distribution. IOCG = iron oxide copper gold deposits; IOA = iron oxide-apatite deposits. (Color online.)

Table 1. Apatite trace element data description
Deposit type	 Apatite type	 Location	 Country	 Selected reference(s)
IOCG	 Magmatic/	 Wernecke, Bhukia,	 U.S.A., Australia, India	 Mao et al. (2016); 
	 hydrothermal	 Wirrda Well prospect, 		  Mukherjee et al. (2017); 
		  Acropolis prospect		  Krneta et al. (2017)

IOA	 Magmatic/	 Durango, Aoshan, 	 Mexico, Canada, China	 Mao et al. (2016)
	 hydrothermal	 Great Bear		

Orogenic Au	 Hydrothermal	 Congress (Lou), 	 Canada, China, U.S.A., India	 Mao et al. (2016); 
		  Kirkland Lake, Dentonia, Seabee,		  Hazarika et al. (2016); 
		  Laodou, Xindigou, Hutti		  Zhang et al. (2020)

Porphyry	 Magmatic/	 Boss Mountain, Mount Polley,	 Canada, China, U.S.A., German, 	 Cao et al. (2012); Mao et al. 
	 hydrothermal	 Shiko, Kemess South, Highmont,	 South Africa, Kazakhstan	 (2016); Pan et al. (2016); 
		  Highland Valley, Gibraltar, Brenda, 		  Xing et al. (2021)
		  Endako, Cassiar Moly, Dobbin,	
		  Lornex, Willa, Daheishan		

Skarn	 Hydrothermal	 Racine, Minyari, Little Billie, 	 Canada, China, U.S.A., Kazakhstan	 Cao et al. (2012); Mao et al. (2016); 
		  Gold Canyon, O’Callagham’s, Molly, 		  Adlakha et al. (2018); Yang
		  Yangla, Shuikoushan, Cantung		  et al. (2018); Jia et al. (2020)

Unmineralized	 Magmatic	 Hawaiian Islands, European 	 Canada, China, U.S.A., German, South	 Acosta-Vigil et al. (2010); Laurent et al.
		  orogenic belt, Jan mayen, North 	 Africa, British, France, Brazil, Chile, Cabo	 (2017); Henrichs et al. (2018); 
		  Atlantic igneous province, Mexican	 Verde, Russia, Bolivia, Congo, Morocco,	 Minissale et al. (2019); 
		  volcanic belts, Sulawesi Arc	  Czech, Finland, Greek, Hungary, Italy, 	 Matusiak-Malek et al. (2021); 
			   Kenya, Norway, Spain, Tanzania, Turkey, Peru	 Sun et al. (2021)
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high-dimensional space have the potential to distinguish apatite 
derived from different ore deposit types.

Model development and performance
Machine learning is used to teach algorithms to construct 

self-learning systems which can handle large data sets more 
efficiently (Jordan and Mitchell 2015; Mahesh 2020). Machine 
learning is classified into two broad categories: supervised 
learning and unsupervised learning (Soofi and Awan 2017). In 
this study, we used supervised machine learning (use of labeled 
data sets to train algorithms to classify data) to link apatite trace 
element composition to their source ore-deposit type. We tested 
four different established algorithms: k-nearest neighbors (KNN) 

(Bentley 1975), random forest (RF) (Breiman 2001), support 
vector machine (SVM) (Vapnik 1995), and eXtreme Gradient 
Boosting (XGBoost) (Chen et al. 2015), before selecting the best 
classification model after hyperparameter optimization and com-
parison. Figure 3 outlines the detailed workflow of our approach.

Data pre-processing
Pre-processing of the data involves standardization and balance 

processing. A suitable standardization procedure is critical in ap-
plying machine learning algorithms, to avoid attributes in greater 
numeric ranges dominating those in smaller numeric fields, while 
also helping to eliminate potential numerical difficulties during 
the calculations in many machine learning approaches (Hsu et al. 

La Ce Pr Nd Sm Eu Gd

Dy Yb Lu Sr Y Th U

4

2

0

-2

4

2

0

-2

T
ra

c
e
 e

le
m

e
n

ts
 (

p
p

m
 l
o

g
)

T
ra

c
e
 e

le
m

e
n

ts
 (

p
p

m
 l
o

g
)

(a)

(b)

Porphyry

Unmineralized

Skarn
IOCG
IOA
Orogenic

Fig 2

Figure 2. Box plots and line plots showing the abundances and dispersion of the selected 14 trace elements in apatite. (a and b) The box plots 
of data categorized according to deposit types. The height of the colored bars represents the interquartile range (25–75th percentile). The horizontal 
lines within the colored bars are the median. Whiskers show the 5–95th percentile. The rhombuses (diamond shapes) represent outliers of more 
than 1.5σ. Unknown denotes the deposit type is known but the locality is not specified. (Color online.)
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2003). We first transformed the data set in this study by applying 
a log-ratio transformation to obtain a Gaussian distribution, which 
was then normalized using the “Standardscaler ()” function in the 
Scikit-learn machine learning library for Python (more detail is 
provided on the libraries employed in this study). This function 
centers data by setting the mean to zero for each feature, then 
scaling it by dividing non-constant features by their standard 
deviation to produce a standard normal distribution with the mean 
of observed values = 0 and a standard deviation = 1.

Dealing with imbalanced data are essential prior to building 
a machine learning model. Many algorithms may be biased 
toward classes with large sample sizes if the training set is im-
balanced. For example, in our data set, 2300 analyses are from 
unmineralized magmatic apatite, while only 78 analyses are from 
IOCG deposits. Therefore, we applied the synthetic minority 
oversampling technique (SMOTE) using the imbalanced-Learn 
Library in Python to minimize the possible effects resulting from 
variations in sample size. SMOTE (Chawla et al. 2002) is an 
improved scheme based on a random oversampling algorithm, 
which artificially synthesizes new data to add to the data set. 
Compared with most sampling methods, SMOTE has stronger 
robustness and achieved the real sense of combining the over-
sampling minority class and under-sampling majority class.

The selected data set is randomly divided into a training 
data set (80%) and a testing data set (20%) using the hold-out 
method while maintaining the exact proportions of each class. 
The training set was oversampled using the SMOTE algorithm, 

which was then used to train the classifier, while the testing set 
was utilized to evaluate the classifier.

Algorithm comparison
K-nearest neighbors (KNN), random forest (RF), support vec-

tor machine (SVM), and eXtreme Gradient Boosting (XGBoost) 
are widely used machine learning methods that can be applied 
to the classification of high-dimensional data, and have been 
commonly used in various fields in the geosciences (Carranza 
and Laborte 2015; Petrelli et al. 2017; Liu and Beaudoin 2021; 
Shen et al. 2022). We compared these four supervised machine 
learning algorithms to select the optimal approach to train the 
machine learning model for determining ore-deposit type from 
apatite trace element data.

KNN is one of the simplest classification methods in that it 
calculates the similarity (proximity) between new and available 
data. It puts the new data case into the category most similar to 
the available categories. While this simple classification method 
has no explicit training step, it is not well suited for large data 
sets with high dimensionality due to the difficulties in calculating 
proximities for each data point in high dimensions and does not 
work well on imbalanced data or data sets with outliers (Bentley 
1975; Abu Alfeilat et al. 2019; Nathwani et al. 2022). RF employs 
an ensemble of decision tree classifiers on various subsamples 
of the data set and uses averaging to improve the predictive 
accuracy and control over-fitting (Breiman 2001). RF does not 
require significant tuning of parameters, tends not to overfit the 
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Figure 3. Workflow employed to develop the machine learning model. (a) Creating the initial data set after data pre-processing. (b) Using 
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data and can handle nonlinear numeric and categorical predictors. 
Nevertheless, prediction accuracy on complex problems is 
generally inferior to that of gradient-boosted trees. RF classifi-
cation is also more difficult to interpret than a single decision 
tree (which may be easily visualized as a sequence of decisions 
and outcomes). The objective of the SVM algorithm is to find a 
hyperplane in N-dimensional space (where N is the number of 
features, in this case elements) that distinctly classifies the data 
points. It is the most commonly used machine learning method 
in geosciences (Noble 2006; Soofi and Awan 2017), tends not 
to overfit data nor be overly influenced by outliers, and is most 
effective in high-dimensional spaces when there is a clear margin 
of separation between classes. SVM does not perform very well 
when the data set is noisy (i.e., target classes are overlapping) 
or on large data sets due to the training time involved. The final 
SVM model is not probabilistic and can be challenging to inter-
pret and also requires selection of an appropriate kernel function 
and hyperparameters. XGBoost is a scalable machine learning 
system that combines “weak classifiers” to form “strong clas-
sifiers” based on a decision tree with gradient boosting (Chen 
and Guestrin 2016). It typically outperforms all other algorithms 
in machine learning community competitions, can handle large 
data sets and is not prone to overfitting or the influence of 
outliers when properly tuned (Nielsen 2016; Abou Omar 2018; 
Ogunleye and Wang 2020; Wang et al. 2020). It also does not 
require significant feature processing (i.e., no need for scaling 
or normalizing data, and it can also handle missing values well); 
thus feature importance can be ascertained, allowing for feature 
selection. It does not work well on sparse and unstructured data 
and can be difficult to tune due to the many hyperparameters 
involved. Similar to many of the other algorithms described 
above, interpretation of the final model can be difficult.

Grid search and cross-validation were introduced to opti-
mize hyperparameters as appropriate hyperparameter selection 
can significantly improve the performance of the machine learn-
ing model. Grid search is the traditional approach to hyperpa-
rameter optimization, which finds the optimal hyperparameters 
by conducting a complete search over a given subset of the 
hyperparameters space of the training algorithm (Liashchyn-
skyi and Liashchynskyi 2019). However, a single grid search 
is insufficient, and therefore, we used k-fold cross-validation 
to undertake multiple grid searches using the “GridSearchCV 
()” function in Python’s Scikit-learn machine learning library. 
The training set is divided into k groups, and one subset of 
data is selected randomly as a validation set and the remainder 
(k-1) of the subsets as training data sets. This step is repeated 
for k times to obtain k models, and the average classification 
accuracy of the final validation set of these k models is used 
as the performance indicator of the machine learning model.

We performed a grid search with 10-fold cross-validation 
to tune hyperparameters and used the testing set to evaluate 
the F1 score (which conveys the balance between the precision 
and the recall) of the four machine-learning algorithms. We set 
the random seed while splitting the training and testing sets. 
This ensures that the data are divided the same way every time 
the code is run and is also required because algorithms such as 
RF and XGBoost are non-deterministic (for a given input, the 
output is not always the same) and thus require a random seed 

argument for reproducible results and algorithm comparison. 
After tuning the hyperparameters, the algorithms yielded the 
following performance: KNN algorithm (F1 score: 88.6%), 
random forest algorithm (F1 score: 89.8%), SVM algorithm 
(F1 score: 89.7%), and XGBoost algorithm (F1 score: 90.8%). 
Table 2 provides detailed information on the hyperparameters 
and test scores, and Figure 4 shows the detailed classification 
information of the four algorithms on a confusion matrix. We 
chose XGBoost as the optimal supervised machine-learning 
algorithm as it produced the highest test score and the best 
and most balanced performance across the five ore deposit 
categories (Fig. 4).

Feature selection
To effectively apply machine learning methods, feature selec-

tion is a key step that helps understand the data, reduces compu-
tation and the curse of dimensionality (the explosive nature of 
increasing data dimensions and its resulting exponential increase 
in computational efforts), and improves learning performance 
(Kalousis et al. 2007; Chandrashekar and Sahin 2014; Kumar 
and Minz 2014; Li et al. 2017). The SHAP tool was employed 
to compute each trace element’s contribution (SHAP value) in 
apatite in the initial data set for a particular prediction. We list the 
SHAP values in descending order in Figure 5 and sequentially 
added more elements to the XGBoost algorithm in descend-
ing SHAP order to show the change (cross-validation and test 
score) in model performance. As shown in Figure 5, for n = 1 
(Th), the cross-validation score is ~59%, and the test score was 
only ~37%. Increasing the number of elements (n = 5; Th, U, 
Sr, Eu, Dy), the cross-validation score increased dramatically 
to ~98%, with the test score increasing to ~86% (n = 5). When 
n = 8, the cross-validation score and test score have stabilized 
at ~99% and ~90%. The model could hence be built from these 
eight elements (Th, U, Sr, Eu, Dy, Y, Nd, La) as there is minimal 
improvement when n > 8, which is geologically realistic as the 
remaining six elements (n = 9 to 14) are all REEs which exhibit 
coupled geochemical behavior. Therefore, to improve the learn-
ing performance and the application of the model, we built a 
filtered data set using the XGBoost method with eight elements 
(Th, U, Sr, Eu, Dy, Y, Nd, La).

Retraining and testing the classifier
The filtered data set was again randomly split into a training set 

(80%) and a testing set (20%), and the training set was then overs-
ampled using the SMOTE algorithm and retrained to produce the 
final XGBoost classifier. Grid search and 10-fold cross-validation 
were used to choose the optimal hyperparameters (gamma and 
max_depth, Fig. 6). The classifier was evaluated on the testing set. 
Randomly splitting the training set and testing set will change the 
predicted results of the XGBoost model each time, thus, the test 

Table 2.	 Optimal hyperparameters and test scores of the four applied 
algorithms

Algorithms	 Best	 Hyperparameter	 Test
	 hyperparameters	 cross-validation score	 score
KNN	 n_neighbors = 2; P = 5	 99.0%	 88.6%
RF	 n_estimators = 130	 98.8%	 89.8%
SVM	 C = 64; gamma = 0.5	 99.2%	 89.7%
XGBoost	 n_estimators = 148	 98.8%	 90.8%
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scores (mean score ± standard deviation) were calculated from 50 
iterations. The optimal XGBoost classification was determined for 
hyperparameters of n_estimators = 148, gamma = 0, max_depth 
= 9. (Table 3), with a precision of 0.89 ± 0.02, recall of 0.90 ± 
0.02, F1 score of 0.89 ± 0.02, and accuracy of 0.94 ± 0.01. Figure 
6 shows the F1 score of different hyperparameter combinations. 
A summary of the precision, recall, and F1 score for each class 
is provided in Table 3. 

Libraries
All operations on the reference data set from pre-processing 

through to model application were undertaken using the Python 
programming language. The following libraries were used to 
complete the code: pandas (Snider and Swedo 2004), numpy 
(Oliphant 2006), and imlearn (Ma and He 2013) for data 
analysis; matplotlib (Barrett et al. 2005) and seaborn (Waskom 
2021) for plotting the diagrams; scikit-learning (Kramer 2016) 
and xgboost (Chen et al. 2015) for machine learning; and shap 
(Lundberg and Lee 2017) for feature selection and machine 
learning interpretation.

Discussion
Limitations of 2D classification diagrams employing two 
variables

The potential limitations of employing discrimination dia-
grams (e.g., 2D scatterplots with two variables) were initially 
discussed in the introduction and are explored further here. In 
this study, we first calculated the ratio of two random elements 
from the data set and added them into the data set as new features. 
A total of 5460 discrimination diagrams were constructed using 
any two features in the data set with the best discrimination com-
bination represented by a plot of Th/Pr vs. U/Pr ratio (Fig. 7a), 
with the silhouette coefficient used to investigate the separation 
distance between the resulting clusters. We also investigated the 
six elements (Th, U, Sr, Eu, Dy, and Y) with the highest SHAP 
values (Fig. 5) to draw 2D scatterplots (Figs. 7b, 7c, and 7d).

As shown in Figure 7, these four discrimination diagrams can-
not effectively distinguish between an ore-fertile and ore-barren 
provenance. Apatite data from different ore-fertile environments 
overlap as well. This is the principal limitation of two-variable 
scatterplots—they only employ a small amount of information 

Figure 4. Confusion matrix of the testing set used to evaluate the accuracy of the four algorithms. (a) KNN. (b) Random forest. (c) SVM. (d) 
XGBoost. The algorithm method and its respective F1 score are presented above each panel while the numbers at the top and bottom of each square 
represent the proportion of predicted deposit types and the number of predicted deposit types, respectively. (Color online.)
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from the high-dimensional data, unlike the high-dimensional 
machine learning approach undertaken in this study. Even 
though the apatite trace element data from the different ore 
deposit types overlap, the apatite data from individual deposit 
types still cluster together on the four discrimination diagrams 
(Fig. 7). Unsurprisingly given the extremely broad variation in 
apatite trace element abundances in igneous rocks (O’Sullivan 
et al. 2020), the unmineralized magmatic apatite field is by 
far the largest, encompassing nearly all the ore deposit fields. 
The unmineralized magmatic apatite field exhibits bimodal Sr 
(Fig. 7b) and U abundances (Fig. 7c). This corroborates the 
findings of O’Sullivan et al. (2020), with U abundances low 
in ultramafic igneous and low-grade metamorphic apatite and 
higher in igneous and high-grade metamorphic apatite, and Sr 
low in all metamorphic rocks and I- and S-type igneous rocks, 
and higher in alkaline and ultramafic igneous rocks (Fig. 6 in 
O’Sullivan et al. 2020).

Apatite from IOA deposits define relatively restricted fields 
on all discrimination plots (Fig. 7), while those from orogenic 

Th Eu Dy Y Nd La Lu PrSrU Ce GdYbSm

1.0

0.4

0.6

0.8

0.0

0.2

8

0

2

3

4

7

5

6

1

m
e

a
n

(|
S

H
A

P
 v

a
lu

e
|)

 (
a

v
e

ra
g

e
 i

m
p

a
c

t 
o

n
 m

o
d

e
l 
o

u
tp

u
t 

m
a

g
n

it
u

d
e

)

S
c

o
re

 o
f 

th
e
 m

o
d

e
l

9911..339911..009900..999911..33
8899..99

8866..66
8844..998855..77

7799..00

7711..99

3388..99

9911..44

3377..11

9900..55

9988..999988..889988..779988..779988..889988..999988..889988..22

8822..44

9977..55 9977..77

9911..88

5588..66

9955..44

Test F1 score
xx

x Cross-validation
score

SHAP value

Fig 5

Figure 5. The mean SHAP value of each element and test F1 and 
cross-validation scores of the XGBoost model. The bar plot shows the 
mean SHAP value of each element, which reflects its contribution to the 
model prediction. The lines reflect the change in algorithm performance 
with increasing number of elements (red = cross-validation score; orange 
= test F1 score). (Color online.)
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max_depth = 9. (Color online.)

Table 3. Evaluation of 50 iterations of the final XGBoost classifier
	 Precision	 Recall	 F1 score	 Support
IOCG	 0.70 ± 0.12	 0.74 ± 0. 12	 0.71 ± 0.09	 15.80 ± 3.63
IOA	 0.99 ± 0.01	 0.98 ± 0.02	 0.98 ± 0.01	 52.08 ± 5.26
Orogenic Au	 0.91 ± 0.03	 0.90 ± 0.04	 0.90 ± 0.03	 49.33 ± 6.40
Porphyry	 0.86 ± 0.04	 0.87 ± 0.04	 0.87 ± 0.03	 84.57 ± 7.71
Skarn	 0.93 ± 0.03	 0.92 ± 0.03	 0.92 ± 0.02	 108.61 ± 11.11
Unmineralized	 0.96 ± 0.01	 0.96 ± 0.01	 0.96 ± 0.01	 506.61 ± 13.78
Accuracy			   0.94 ± 0.01	 817.00
Macro avg.	 0.89 ± 0.02	 0.90 ± 0.02	 0.89 ± 0.02	 817.00
Weighted avg.	 0.94 ± 0.01	 0.94 ± 0.01	 0.94 ± 0.01	 817.00

Au deposits show higher concentrations of Y and the geochemi-
cally similar element Dy (Figs. 7b and 7d). The kernel density 
curves of Sr contents in apatite from orogenic Au deposits also 
have two distinct peaks (Fig. 7b). The kernel density curves of 
Eu and U abundances show that apatite from skarn deposits 
have lower concentrations of Eu and higher abundances of U 
compared with apatite from porphyry deposits (Figs. 7c and 7d). 
These observations show that the trace element abundances of 
apatite from different ore deposits exhibit systematic trace ele-
ment variations and thus have the potential to be discriminated 
effectively using the high-dimensional data space through the 
machine learning approach adopted in this study.

Classification in high-dimensional space
The classifier can effectively distinguish between ore-fertile 

and ore-barren environments (recall ratio >95% for barren 
samples), and apatite from the different deposit types can also 
be successfully distinguished with F1 test scores of >88% for all 
four algorithms (Fig. 4). This suggests that classifying deposit 
types using machine learning applied to apatite compositional data 
are a viable approach. The exception is IOCG apatite, for which 
16% of analyses were predicted to belong to different classes 
(Fig. 8), probably due to the small sample amount of this deposit 
type, even though SMOTE oversampled the training set. The 
predictions for porphyry and skarn deposits are better. However, 
both are less than 90% (porphyry deposits: 89%, skarn deposits: 
88%), which is attributed mainly to the complexity of porphyry 
and skarn mineralization processes. Porphyry mineralization 
takes place across a very broad temperature range from 250 to 
1000 °C, and apatite forming during different porphyry crystal-
lization stages may have very different trace element signatures 
(Sillitoe 2010). Skarn mineralization also occurs across a wide 
range of formation temperatures, while the diverse nature of host 
rock types in skarn systems may impart additional trace element 
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variability (Jia et al. 2020). Future work could include a subdi-
vision of apatite classes to incorporate differing crystallization 
stages and host rock chemistries in porphyry and skarn systems, 
although this is likely to be a substantial undertaking. Neverthe-
less, the XGBoost classifier performs well on the classification 
of fertility and all deposit types in this data set with an overall 
accuracy >94% and F1 score >89%, with both high precision and 
recall ratios, especially for the IOA and orogenic Au deposits, 
from which almost all apatite data are predicted correctly (Fig. 8).

Low-grade metamorphic apatite is very similar in terms 
of its trace element geochemistry to hydrothermal apatite 
(O’Sullivan et al. 2020). Therefore, an effective machine learn-
ing model must distinguish low-grade metamorphic apatite 

from the five mineralized classes. We selected 215 apatite 
analyses from 31 samples from the database of O’Sullivan et 
al. (2020) with different metamorphic grades (high-grade meta-
morphic apatite: 112; low- and medium-grade metamorphic 
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Figure 7. Scatterplots 
and kernel density curves for 
different apatite trace element 
or element ratio combinations. 
(a) Th/Pr vs. U/Pr. (b) Sr vs. Y.  
(c) Th vs. U. (d) Eu vs. Dy. 
(Color online.)

►Figure 8. Confusion matrix of the testing set to evaluate the 
accuracy of the XGBoost classifier. The numbers in the top and bottom 
of each square represent the proportion of predicted deposit types and 
the number of predicted deposit types, respectively. Note the score in 
this confusion matrix and the evaluation report (Table 3) differ slightly 
from the scores presented in the confusion matrix in Figure 4. In this 
figure and Table 3, the XGBoost model was optimized further to use 
three hyperparameters (n_estimators, gamma, and max_depth) and the 
splitting of the training set and testing set was iterated 50 times, both of 
which improved the classifier accuracy. (Color online.)



QIU ET AL.: APATITE DISCRIMINATING BASED USING MACHINE LEARNING312

American Mineralogist, vol. 109, 2024

apatite: 103) as a new testing set. Based on the XGBoost 
classifier, our predicted results show that most of the analyses 
accurately classified unmineralized apatite (181 out of 215, 
Online Materials1 Table S2). Fourteen high-grade metamorphic 
apatite analyses were misclassified as IOCG apatite, while 
98 high-grade metamorphic apatite analyses were correctly 
predicted as unmineralized apatite. For low- and medium-
grade metamorphic apatite, 20 apatites were misclassified as a 
mineralized class (15 apatites predicted as orogenic Au, three 
apatites predicted as porphyry, one apatite predicted as skarn 
and one apatite predicted as IOA). In contrast, the remaining 
83 apatites were predicted correctly. The performance (overall 
accuracy >84%) on this group of metamorphic samples shows 
that our XGBoost classifier can effectively distinguish low-
grade metamorphic apatite from fertile classes and provides a 
rapid and highly accurate approach to predicting ore deposit 
type based on apatite trace element data.

Interpreting machine learning models
Machine learning methods have been widely used in geo-

sciences and various algorithms have been proven to be use-
ful tools for interpreting high-dimensional geochemical data 
(Petrelli and Perugini 2016; Chen et al. 2021; Wang et al. 2021). 
Despite their widespread application in the classification of big 
data sets, machine learning approaches are often referred to as 
a black box, where the data set undergoes a series of calcula-
tions immediately followed by the output of results, without 
providing a transparent working process between the input and 
output data (Lancet Respiratory Medicine 2018). Some studies 
have employed feature importance to select machine learning 
training parameters (Nathwani et al. 2022). However, such an 
approach does not help show the relationship between a given 
feature and the working target—feature importance is based on 
the decrease in model performance and contains no information 
beyond this. To improve the transparency and interpretation of 
our XGBoost classifier, a SHAP summary plot is presented in 
Figure 9. This summary plot combines feature importance with 
the magnitude of feature attributes, and features are ordered 
according to their importance. Each point on the summary 
plot is a SHAP value for a feature and an instance. The feature 
importance determines the position on the y-axis and on the 
x-axis by the SHAP value, while the color represents the value 
of the feature from low to high.

Sr and Eu are the two most diagnostic elements for clas-
sifying IOCG deposits. For example, high concentrations of Sr 
(red colors) negatively influence the classification while low 
concentrations have a positive influence; the relationship is the 
opposite for Eu (Fig. 9a). For IOA deposits, high-Th contents, 
low-U abundances and low Sr favor prediction as an IOA deposit 
(Fig. 9b). Porphyry deposit apatite classification is favored by 
low Th and low Nd (Fig. 9c) while low-U and -Eu abundances 
help to distinguish skarn deposits. The lowest U concentrations 
may be partly affected by values below the limit of detection. A 
larger data set should confirm the relationship between apatite 
U contents and skarn deposits (Fig. 9d). High concentrations of 
Dy and Sr help classify orogenic Au deposits (Fig. 9e). Although 
there is wide variation in apatite trace element abundances in 
different types of igneous and metamorphic rocks (O’Sullivan 

et al. 2020) and the unmineralized magmatic apatite data set is 
very large and diverse, moderate Th and, in particular, high Nd 
are indicative for unmineralized apatite (Fig. 9f).

In summary, Th, U, Eu, and Nd are the most effective ele-
ments for classifying ore deposit types, especially Th for IOA 
(Fig. 9b), Nd for porphyry and unmineralized apatite (Figs. 9c 
and 9f), U for skarn (Fig. 9d), and Dy for orogenic Au deposits 
(Fig. 9e). Other elements, like Sr, also improves the classification 
of some deposit types (Figs. 9a and 9e).

Implications
Traditional methods to discriminate (e.g., using two-variable 

scatterplots) only result in partial separation of ore deposit 
classes because of the complexity of apatite chemistry. The 
machine learning-based approach (XGBoost) fully exploits the 
high dimensionality of apatite trace element data to produce a 
novel geochemical classification system to link apatite trace 
element chemistry with ore deposit type. With the increasing 
amounts of high-throughput apatite trace element data produced 
by modern analytical techniques, our XGBoost approach offers 
the potential to make more data-driven decisions, such as sub-
division of porphyry and skarn mineralization stages. Moreover, 
the novel SHAP-based analysis approach aids understanding of 
the sources, chemistry, and evolution of mineralizing melts and 
fluids in ore deposit studies.

Figure 9. SHAP summary plots of apatite trace element data various 
deposit types. (a) IOCG. (b) IOA. (c) Porphyry. (d) Skarn. (e) Orogenic 
Au. (f) Unmineralized rocks. Each line represents one element from the 
data set in decreasing order of importance, and the abscissa is the SHAP 
value. When the SHAP value exceeds 0, the feature has a positive impact 
and vice versa. A small circle (dot) represents an individual analysis and 
the color represents the concentration of the respective element (red = 
high, blue = low). (Color online.)
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