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Abstract
The mineral zircon has a robust crystal structure, preserving a wealth of geological information 

through deep time. Traditionally, trace elements in magmatic and hydrothermal zircon have been 
employed to distinguish between different primary igneous or metallogenic growth fluids. However, 
classical approaches based on mineral geochemistry are not only time consuming but often ambiguous 
due to apparent compositional overlap for different growth environments. Here, we report a compila-
tion of 11 004 zircon trace element measurements from 280 published articles, 7173 from crystals in 
igneous rocks, and 3831 from ore deposits. Geochemical variables include Hf, Th, U, Y, Ti, Nb, Ta, 
and the REEs. Igneous rock types include kimberlite, carbonatite, gabbro, basalt, andesite, diorite, 
granodiorite, dacite, granite, rhyolite, and pegmatite. Ore types include porphyry Cu-Au-Mo, skarn-
type polymetallic, intrusion-related Au, skarn-type Fe-Cu, and Nb-Ta deposits. We develop Decision 
Tree, XGBoost, and Random Forest algorithms with this zircon geochemical information to predict 
lithology or deposit type. The F1-score indicates that the Random Forest algorithm has the best predic-
tive performance for the classification of both lithology and deposit type. The eight most important 
zircon elements from the igneous rock (Hf, Nb, Ta, Th, U, Eu, Ti, Lu) and ore deposit (Y, Eu, Hf, U, 
Ce, Ti, Th, Lu) classification models, yielded reliable F1-scores of 0.919 and 0.891, respectively. We 
present a web page portal (http://60.205.170.161:8001/) for the classifier and employ it to a case study 
of Archean igneous rocks in Western Australia and ore deposits in Southwest China. The machine 
learning classifier successfully determines the known primary lithology of the samples, demonstrat-
ing significant promise as a classification tool where host rock and ore deposit types are unknown.

Keywords: Zircon, trace elements, igneous rocks classification, ore deposits classification, machine 
learning, Random Forests

Introduction
Zircon (ZrSiO4) is a common accessory mineral that grows in 

most silicate rocks and in many ore deposits. Zircon trace element 
chemistry reflects the partitioning of elements in the melt or fluid 
environment and the mineral during its crystallization (or later dur-
ing recrystallization). Trace elements from a melt or other fluid can 
replace Zr, Si, or sit within interstitial spaces in the zircon structure 
and become incorporated into the crystal during magmatic growth 
or during later metamorphism (Geisler et al. 2007; Hanchar et al. 
2001; Hoskin and Schaltegger 2003). Different trace elements 
within the zircon crystal record different information. For example, 
the radioactive elements Th, U, and Pb can be used to calculate 
ages (Lee et al. 1997) and retain crude relationships with magma 
fractionation state and bulk rock chemistry [e.g., Kirkland et al. 

(2015) on Th/U], Ti content is temperature dependent (Watson et 
al. 2006), Ce and Eu content is a key parameter related to magma 
oxygen fugacity (Trail et al. 2012), and Nb and Ta content reflects 
the degree of magmatic differentiation (Chen et al. 2021). Hf 
readily substitutes for Zr in the zircon structure, meaning that the 
176Hf/177Hf isotopic ratio, reflecting source Lu/Hf fractionation, is 
a powerful tool for crustal evolution studies (e.g., Belousova et 
al. 2010). A wide range of other geochemical parameters associ-
ated with zircon have been used to understand this mineral and, 
hence, rock crystallization and later alteration history (Bell et al. 
2019; Claiborne et al. 2010; Olson et al. 2017; Zeng et al. 2017).

Studies on the classification of igneous rocks based on zircon 
compositions are abundant (Belousova et al. 2002; Breiter et al. 
2014; Gudelius et al. 2020; Nardi et al. 2013). Utilizing a series of 
binary diagrams for zircon trace elements, Belousova et al. (2002) 
found that the content of specific elements varied between different 
igneous rock types. Belousova et al. (2002) used this information 
to construct a trace element Decision Tree to distinguish between 
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potentially different igneous rocks precipitating zircon from their 
primary magma. Zircon composition has also been used as a 
pathfinder for mineralization (Lu et al. 2019), as there are differ-
ences in temperature, oxygen fugacity, water content, and magma 
fractionation state for barren and mineralized fluids which become 
encoded into zircon mineral chemistry. Porphyry-type Cu-Au-Mo 
deposits are commonly associated with intrusive bodies with high 
oxygen fugacity and water content (Lu et al. 2016). W-Sn deposits 
are associated with generally low oxygen fugacity (Yang et al. 
2020). Nb-Ta deposits are often associated with highly evolved 
rocks (Yang et al. 2014). In the last 20 years, laser ablation in-
ductively coupled plasma mass spectrometry (LA-ICP-MS) has 
become a popular tool for both geochronology and geochemical 
analysis of zircon, allowing large data sets to be rapidly collected 
from relatively small sample volumes within individual zircon 
crystals (Jackson et al. 1992). As more zircon data are published, 
there is the potential to search for patterns within this “big data” 
and use the resulting information to address geological problems 
that may have lacked clear resolution with smaller data sets.

Machine learning is important in the context of “big data” and 
uses computational power to develop algorithms and statistical 
models to address a broad range of geological questions. With 
these algorithms and models, computer systems can process 
and analyze massive amounts of data in a short time and make 
predictions or decisions on their own without explicit instructions 
(Mitchell 1997). Supervised learning is an important branch of 
machine learning, which predicts class labels by training a model. 
It requires input information to be labeled and divides it into a 
training data set and a test data set. The training data set is used 
to teach the model, and the test data set serves to evaluate the 
performance of the constructed model (Hastie et al. 2009). Com-
mon supervised learning models include Decision Trees, Support 
Vector Machine (SVM), Random Forest, Extreme Gradient Boost-
ing (XGBoost), and K-Nearest Neighbors (KNN). These models 
have already yielded some promising results for mineralogy. For 
example, models have been developed to predict the host rocks 
of quartz (Wang et al. 2021) and garnet (Schönig et al. 2021), to 
trace the possible provenance of detrital apatite in sedimentary 
rocks (O’Sullivan et al. 2020), and to estimate the temperature 
and storage depth of clinopyroxene-bearing magma (Petrelli et 
al. 2020). For zircon grains, recently, Zou et al. (2022) success-
fully distinguished fertile and barren porphyries with the help of 
Random Forests and neural networks.

Distinct from the study of Zou et al. (2022), here we aim to 
discriminate different magmatic rocks and different mineralizing 
fluids with zircon trace elements. Such a classification model will 
have important use in provenance analysis of detrital zircon and 
ore prospecting. Specifically, with lithological context removed 
from a detrital zircon, this tool may help refine provenance inter-
pretations, including lithology of the source (Hoskin and Ireland 
2000) and its potential geodynamic setting (Grimes et al. 2015), 
and expand the exploration search space for mineral systems (Lu 
et al. 2016). In this study, we prepared separate databases of zircon 
chemical compositions for igneous rocks and ore deposits. We 
have demonstrated that a Random Forests algorithm yields the 
best prediction for both igneous rock and ore deposit types. We 
also filtered the most significant elements from the compilation 
and developed a model using fewer variables, which can achieve a 

similar classification effect. Compared with conventional methods, 
machine learning is both more efficient and reliable in classifying 
igneous rocks and ore deposits.

Zircon databases and conventional 
classification methods

Zircon databases
We collected 11 004 zircon trace element measurements from 

280 published articles, with samples widely distributed over both 
space and time (Fig. 1). Part of the data was extracted from the 
online database https://data.goettingen-research-online.de (Göt-
tingen eResearch Alliance). The elements in the database are Hf, 
U, Th, Y, Ti, Nb, Ta, and REE. Although zircon also contains P, 
Ca, Al, Fe, Sc, and Sr, the amount of data currently available for 
these elements is limited and, thus, is not yet suitable for inclusion 
in this form of analysis.

The igneous rock or ore deposit classification and primary 
publication are given in Table 1, and detailed zircon information 
can be found at https://github.com/ZihaoWen123/geology_class, 
including sample locations, trace element contents, and references. 
The Igneous Rocks Database includes nine different igneous rock 
types, with rock names extracted from the lithological descriptions 
in the source publications. However, some of these samples have 
similar mineral assemblages. To improve classification efficiency, 
closely comparable mineral assemblages were integrated (Table 1). 
Ultimately, the Igneous Rock Database contains six discrete rock 
types: kimberlite, carbonatite, basic rocks (BR), intermediate rocks 
(IR), acid rocks (AR), and pegmatite. The Ore Deposit Database 
covers five discrete deposit types (Table 1): porphyry Cu-Au-Mo 
deposit, skarn-type polymetallic deposit, intrusion-related Au 
deposit, skarn-type Fe-Cu deposit, and Nb-Ta deposit. Skarn-type 
polymetallic deposits in the database are mainly found in southern 
China and Southeast Asia, and are dominated by W, Sn, with minor 
Pb, Zn, and Sb. Notably the above classification of igneous rocks 
and ore deposits is based on the description of field lithology and 
deposits in the published source articles.

Conventional classification methods
Before developing a machine learning method, we analyzed 

the zircon data from the igneous rocks (Belousova et al. 2002; 
Claiborne et al. 2010; Gagnevin et al. 2010; Gudelius et al. 2020) 
and ore deposits (Large et al. 2018; Lee et al. 2017; Lu et al. 2016) 
using more traditional two-dimensional classification methods 
(Fig. 2). REE depletion is regarded as an important feature of 
kimberlites (Hoskin and Ireland 2000). We found that not only 
REE (med. 299 ppm) but also Th (med. 33.5 ppm), U (med. 
66.9 ppm), and Y (med. 248 ppm) are depleted in zircon crystals 
from kimberlites. In pegmatites, Nb (med. 19.4 ppm), Ta (med. 
8.32 ppm), REE (med. 1789 ppm), U (med. 2123 ppm), and Y 
(med. 2256 ppm) are all enriched (Figs. 2a–2c). Nb, Ta, and REE 
deposits are often associated with pegmatites (Van Lichtervelde 
et al. 2009; Seidler et al. 2005; Zhang et al. 2004), and some U 
deposits are found in areas where pegmatite exposed (Chen et 
al. 2019). Some Nb deposits are also spatially correlated with 
carbonatites (Melgarejo et al. 2012; Wu et al. 2021), as Nb (med. 
52.5 ppm) is enriched in carbonatites, while Ti (med. 3.03), REE 
(med. 519 ppm), U (med. 31.5 ppm), and Y (med. 554 ppm) are 

https://data.goettingen-research-online.de
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generally deficient. Figure 2d shows the method proposed by 
(Grimes et al. 2007) for tracing zircon source areas, which can 
constrain kimberlites but places few limits on the source of zircon 
from other rock types. The elemental contents of AR (acid rock), 
IR (intermediate rock), and BR (basic rock) are not significantly 
enriched or depleted, and all significantly overlap and cannot be 
uniquely identified via bivariate plots (Fig. 2).

Relevant to deposit formation, oxygen fugacity, and water 
content are known to be related to the transport and deposition 
of metals (Wyborn et al. 1994). Some studies have found that 
Eu and Ce anomalies in zircon are controlled by the magma 
temperature and also the crystallization of other minerals, such 
as titanite, plagioclase, and hornblende, in addition to oxygen 
fugacity (Nathwani et al. 2021; Loader et al. 2022). Nonetheless, 
exploration approaches using Eu/Eu* (Dilles et al. 2015) and Ce* 
(Loader et al. 2017) have proved useful in distinguishing fertile 
from barren porphyry systems (Shen et al. 2015; Shu et al. 2019; 
Pizarro et al. 2020) (Fig. 2e). Recent studies have found that the 
water content of zircon crystals can be measured directly to esti-
mate the amount of water within the primary magma (Xia et al. 
2019). Another geochemical signature in zircon, with relevance 
for ores, is that water-rich magmas promote hornblende crystal-
lization that suppresses plagioclase crystallization, resulting in Eu 
enrichment and Y deficiency in zircon. Lu et al. (2016) proposed 
that Eu/Eu*/Y × 10 000 and Ce/Nd/Y of zircon are positively cor-
related with magma water content (Fig. 2f). We find that skarn-type 
polymetallic deposits are associated with low oxygen fugacity 
and water content environments, while porphyry-type deposits, 
intrusion-related Au deposits, and skarn-type Fe-Cu deposits are 
associated with high oxygen fugacity and water content (Figs. 
2e and 2f). Garnet is widespread in skarn rocks, which have a 
greater preference for HREE (Lee et al. 2017; Rubatto 2002). This 
chemical affinity may be responsible for the HREE deficit and low 
Yb/Gd ratios in zircons from skarn-type polymetallic deposits and 

skarn-type Fe-Cu deposits (Fig. 2g). In addition, zircons in Nb-Ta 
deposits unsurprisingly have high Nb and Ta contents (Fig. 2h).

Data preprocessing for machine learning 
methods

Data preprocessing and model building were completed in 
Python on the scikit-learn platform (Pedregosa et al. 2011).

Addressing missing values—Imputation
In data analysis, data integrity is very important to obtain 

accurate and reliable results. Therefore, filling in missing values 
with appropriate estimates (imputation) is an essential step in data 
preprocessing. There are some missing compositional values in 
the data set, either because the elemental content was below the 
detection limit of the LA-ICP-MS because the analyst simply did 
not collect that element or because there was some other analytical 

Table 1. Igneous rock and ore deposit type and data volume
Database types  Number of publications Amount of data
Igneous rocks
 Kimberlite  10 549
 Carbonatite  8 240
BRa  Gabbro 30 1058
  Basalt  
IRb  Andesite 72 2514
  Diorite  
ARc  Granite 66 2594
  Rhyolite  
 Pegmatite  8 218
   
Deposits
Porphyry-type Cu-Mo-Au deposit 24 2122
Skarn-type Polymetallic deposit 13 896
Intrusion-related Au deposit 3 203
Skarn-type Fe-Cu deposit 8 529
Nb-Ta deposit  3 81 
a BR = basic rock, include gabbro and basalt.
b IR = intermediate rock, include andesite and diorite.
c AR = acid rock, include granite and rhyolite.
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Figure 1. World map with sample positions labeled. (Color online.)
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limitation imposed on the acquisition.
For the first missing data case, we elected to remove elements 

with very low contents, such as La and Pr. La and Pr contents are 
often below the detection limit, and measurements of these elements 
are susceptible to reflecting the content of mineral inclusions within 
the zircon grains rather than the zircon itself. These two elements 
were also avoided by other researchers, for example, when calculat-
ing Ce3+ content from rare earth elements of zircon and estimating 
oxygen fugacity (Zhong et al. 2019). In addition, we do not consider 
elements with >20% missing values in the data set. This is because 

estimating a large number of missing values brings a heightened 
degree of uncertainty and could cause the model to poorly reflect 
the true data distribution. Nb and Ta in the ore deposits database 
suffer from a large number of missing measurements.

For the second and third cases of missing data (elements not 
measured for whatever reason), we are able to use the “knn-
classification” and “iterative” vacancy filling methods as there is 
sufficient information to estimate the missing parameter in the data 
set (Emmanuel et al. 2021). The term “knn-classification” uses the 
known characteristics of the data points to determine the nearest 
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Figure 3. Cartoon of the workflow. For data preprocessing, we perform missing value processing, data normalization, and data balancing for 
magmatic rocks and deposits database. The purple boxes denote the optimal method. For the machine learning model, Random Forest works best, and 
the cartoon image is put here to facilitate understanding. Parameter tuning and fivefold cross-validation were also done for the model. (Color online.)
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K samples to the missing data according to Euclidean distance 
(Eqs. 1 and 2), and then fills the missing values by averaging the 
results of these K samples (Emmanuel et al. 2021).

dxy = √(weight × squared distance from present coordinates) (1)

weight = (total number of coordinates)/(number of present 
coordinates) (2)

The alternative “iterative” method involves defining a model 
that predicts each missing element as a function of all other 
elements and repeating this process of estimating feature values 
multiple times (Emmanuel et al. 2021). Initially, the procedure 
assumes that the missing data has a mean value. The concentration 
is then re-estimated based on the pattern within the entire data set. 
The imputed values are used to update the missing values in the 
original data set. This repetition allows refined estimates for other 
features and can be used as the input in subsequent iterations of 
predicting missing values.

Data standardization
Data standardization unifies the units of measure and magni-

tudes of different features (in our case, elements), eliminating the 
effects of order-of-magnitude differences and making the data 
more comparable. We compared different data standardization 
strategies, including “Min-Max,” “Log,” and “Z-score.”

“Min-Max” scales the original data in the range [0,1], i.e., to 
map the data to the specified interval by linear transformation of 
the original data (Eq. 3).

x = [xi − min(xi)]/[max(xi) − min(xi)] (3)

“Log” (log transformation) standardizes the data by taking the 
logarithm of the data (Eq. 4).

x = log(xi + 1) (4)

The “Z-score” transforms the data into a data structure with 
mean of 0 and standard deviation equal to 1 (Eq. 5). Where μ is 
the mean of the original data and σ is the standard deviation of 
the original data.

x = (xi − μ)/σ (5)

Class imbalance
In the igneous rock database, the AR lithology has the most 

data with 2594 samples. The pegmatite lithology has the least data 
in the database with 218 samples (Table 1). In the case of the ore 
deposits database, the porphyry type Cu-Mo-Au deposit is the most 
numerous with 2122 samples, and the Nb-Ta deposit is the least 
numerous with 81 samples (Table 1). This imbalance in the number 
of samples in different classes (lithology or deposit types) could 
cause the model to be more inclined to predict specific classes 
with more data and thus perform worse on classes with less data, 
resulting in biased model output (Japkowicz and Stephen 2002).

To address the apparent class imbalance a synthetic minority 
over-sampling technique (SMOTE) can be used (Chawla et al. 
2002). This method first calculates the distance of each data point 

in a minority class from the adjacent K data. Then several data 
points are randomly selected from the K nearest neighbors to gen-
erate a new synthetic data point. This new synthetic data point is 
added to the original minority class data set, increasing its number.

Machine learning methods
Data are divided into training and testing sets with the training 

set:testing set ratio = 9:1. The training set was used to develop the 
model and for parameter tuning. The test set was used to evaluate 
the performance of the model (Hastie et al. 2009). We developed 
Decision Tree (Myles et al. 2004), XGBoost (Chen and Guestrin 
2016), and Random Forest (Tin Kam Ho 1995; Breiman 2001) to 
fit the compiled data. These methods are all tree-based algorithms, 
which are non-parametric and work regardless of the distribution/
collinearity of the input data. Other methods, such as SVM, Ar-
tificial Neural Network, and Logistic Regression, can be limited 
compared to tree-based algorithms on geochemical data due to a 
constant sum effect (Rollinson 1992).

Decision Tree
A Decision Tree model is often regarded as “weak classifier” 

and the basis for building integrated algorithms such as XGBoost 
and Random Forest. A Decision Tree is built by constructing a tree 
model that outputs the possible outcomes and probabilities under 
different conditions. Specifically, it selects the best feature from 
all the features as the root node and repeats this process for the 
selected features until a Decision Tree is generated (Myles et al. 
2004). In the tree model, the Gini coefficient (Eq. 6) is used for 
feature selection (Breiman 2001). 

Gini(t) = 1– ∑c–1
i=0p(i|t)2  (6)

XGBoost
In the XGBoost algorithm the basic principle is to iteratively 

add Decision Trees to a model, with each tree attempting to correct 
the errors of the previous tree. During training, the model starts 
with a single Decision Tree and calculates the error (or loss) of the 
predictions on the training data. The algorithm then adds another 
Decision Tree to the model, but this time aims to correct the er-
rors within the first Decision Tree. The combined output of both 
Decision Trees is then used to calculate a new error estimate, and 
the process repeats with additional Decision Trees added until the 
error is minimized. The predictions from each tree are combined 
by adding them together to produce the final output (Chen and 
He 2015; Chen and Guestrin 2016).

Random Forest
In a Random Forest model, the algorithm builds a forest of De-

cision Trees, where each tree is constructed using a random subset 
of the data and features (Fig. 3). The trees are trained independently 
and are not correlated with each other. When making predictions, 
each Decision Tree in the forest is used to classify a given input, 
and the final prediction is made by averaging or taking the ma-
jority vote of the predictions from all the trees (Eq. 7) (Breiman 
2001). The algorithm can provide insight into the importance of 
each feature in the data during training by tracking the reduction 
in misclassification caused by each feature in each tree.

Equation 7 is the majority voting expression (Breiman 2001),  
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where H(x) denotes the combined classification model, hi is the 
individual Decision Tree classification model, Y denotes the output 
variable, and I(∙) is the indicative function.

H(x) = arg max∑k
i=1I[hi(x) = Y] (7)

Parameter tuning and cross validation
We adopt a Bayesian optimization algorithm to automatically 

adjust the parameters of the model (Snoek et al. 2012).
Fivefold cross-validation was employed to verify the reliabil-

ity of the classification model (Hastie et al. 2009) (Fig. 3). This 
computational operation divides the data into five equal parts and 
takes one part at a time for validation with the remainder of the 
data set used for training the model. This calculation was repeated 
five times and the average computed.

Results and discussion
Traditional classification methods and their limitation

Despite our efforts to use our knowledge of geology to distin-
guish between the different rocks and deposits, there are still many 
overlapping areas in Figure 2. We take the Y-U plot for igneous 
rocks and the Eu/Eu*-Ce/Nd plot for ore deposits as examples to 
calculate the accuracy of a conventional classification approach 
(Fig. 4). To avoid altered samples and select the most representative 
chemistry of a rock, the highest and lowest 5% of elemental concen-
tration data were not considered. Figures 4b and 4d show examples 
of BR and porphyry-type Cu-Au-Mo deposits, respectively. First, 
we count the number of data points within overlapping intervals 
and also calculate the overlap rate on the X- and Y-axes. We then 
subtract the product of the two overlap rates from 1, which is the 
accuracy of identifying an igneous rock or ore deposit. BR reveals 
a complete overlap with an identification rate of 0 (Fig. 4b). The 
porphyry type Cu-Au-Mo deposit has 151 data distinguishable on 
a Ce/Nd plot, giving an identification rate of only 9% (Fig. 4d).

In Figure 4a, even the most accurate classification rate, which 
is the rate for pegmatite, is only 64%, followed by carbonatite 
and kimberlite, which are very similar with rates of 19% and 
13% prediction, respectively. AR, IR, and BR are completely 
undistinguished. A similar result is evident in Figure 4c, which 
completely fails to discriminate between Nb-Ta deposits and 
skarn-type Fe-Cu deposits. The highest classification accuracy is 
for intrusion-related Au deposits, at 52%. Skarn-type polymetallic 
deposits and porphyry-type Cu-Au-Mo deposits are similar with 
only 11% and 9% prediction, respectively. In summary, traditional 
methods have generally poor performance in identifying different 
igneous rocks or ore deposits. It may be feasible to improve the 
identification of some rocks and deposits by making additional 
two-dimensional geochemical plots. However, such strategy will 
be both time-consuming and may still be unable to uniquely dis-
tinguish between overlapping fields on discrimination plots and 
thus may lead to erroneous classifications.

Machine learning model construction
Before the selection of a machine learning algorithm, a lot of 

data preprocessing is required, including treatment of missing 
values, data standardization, and addressing class imbalance. These 
steps aim to improve the accuracy, stability, and computational 
efficiency of the model. We ran the model on the compositional 

database with Decision Tree, XGBoost, and Random Forest algo-
rithms, and the results are listed in Table 2. Precision, recall, and 
F1-scores provide evaluation criteria for the classification models 
(see detailed description in Nathwani et al. 2022). The F1-score 
is the summed average of precision and recall and is thus a useful 
summary of the function of the model. We observe that for igne-
ous rocks and ore deposits, the best results are obtained by using 
the “knn-classification” method of filling in missing values, the 
“z-score” method for data standardization, and “SMOTE” for 
class balance.

Improperly filling in the missing values would introduce new 
noisy data, increasing the uncertainty of the model and leading to 
biased results (Pearson 2006). In our models, “knn-classification” 
performs better than the “iterative” imputation method (Table 2). 
A possible reason for this observation is that the KNN algorithm 
is a similarity-based algorithm, and as the same sample group of 
data has a high similarity, the “knn-classification” works better. A 
disadvantage of the “iterative” method is that it is computationally 
intensive. For data standardization, both classification models 
perform best with the “z-score.” This may be because the “z-score” 
method can better preserve the information between features, avoid 
the influence of outliers, and does not change the shape of the 
original data. For class imbalance, “SMOTE” effectively increased 
the number of minority samples and improved their identification.

For machine learning algorithms, Random Forest performs the 
best for both databases no matter what data preprocessing method 
is used (Table 2). It is conceivable that the Decision Tree algorithm 
does not perform well because Random Forest and XGBoost are 
integrated algorithms and they are better at handling data with 
a high level of dimensions (i.e., a large number of attributes 
within the data set). The lower F1-score of XGBoost than Random 
Forest may be due to its tendency to overfit the data. Random For-
est randomly selects some features in the training of each Decision 
Tree, avoiding possible overfitting caused by too many features.

Bayesian optimization is employed to parameterize the best 
igneous rocks and ore deposit models. It improves the predictive 
performance and accuracy of the model, reduces the risk of over-
fitting or underfitting, and improves the generalization ability of 
the model (Snoek et al. 2012). In Table 3, we list the parameter 
combinations (detailed parameter tunning results in GitHub). The 
F1-scores of both igneous rocks and ore deposits classification 
models are significantly improved with the optimization, with 
scores of 0.963 and 0.961, respectively. The results of the fivefold 
cross-validation show that for Random Forest (Table 4), the preci-
sion of the classification models for igneous rocks and ore deposits 
has mean values of 0.947 and 0.897, respectively, suggesting that 
the classification models are both stable and reliable.

A confusion matrix was used to measure the performance of the 
classification model. We can see from Figure 5a that kimberlite has 
the highest value (0.959), followed by AR (0.938), IR (0.891), BR 
(0.882), carbonatite (0.87), and pegmatite (0.75). Some pegmatites 
are mistaken for AR (0.125), which may be due to the fact that they 
underwent a longer chemical evolution sharing ultimate compo-
sitional affinity to AR. For the Ore Deposits Database (Fig. 5b), 
porphyry-type Cu-Au-Mo deposits (0.945) and intrusion-related 
Au deposits (0.95) have a better precision, followed by Nb-Ta 
deposits (0.909) and skarn-type polymetallic deposits (0.841), with 
skarn-type Fe-Cu deposits being the lowest (0.712). Skarn-type Fe-
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Cu deposits can be mistaken for porphyry-type Cu-Au-Mo deposits 
(0.076), intrusion-related Au deposits (0.076), and polymetallic 
silica deposits (0.136). The lower scores may be because both 
skarn-type Fe-Cu deposits and skarn-type polymetallic deposits 
are spatially associated with the same geological environment. 
However, skarn-type Fe-Cu deposits prefer an oxidized and H2O-
rich environment, as do porphyry-type Cu-Au-Mo deposits and 
intrusion-related Au deposits (Sun et al. 2019). 

Feature importance and model simplification
Feature importance highlights how relevant a feature (e.g., 

trace elements in a zircon) is to the classification (e.g., the type of 
igneous rock or ore deposit). Permutation Feature Importance (PFI) 
is a method for assessing the importance of features (Altmann et 
al. 2010). It evaluates the influence of the feature on the model by 
randomly replacing the value of a feature (Altmann et al. 2010).

For the igneous rocks and ore deposits classification models, 
19 and 17 (Nb, Ta missing values >20% were not included in the 
model) elements were taken into account, respectively. In Figure 6, 
we present the importance scores of the features for the Igneous 
Rocks and Ore Deposits Databases. In the igneous classification 
model, Hf (0.123) is considered to be the most important, fol-
lowed by Nb (0.120), Ta (0.089), Th (0.086), etc., and Sm (0) is 
considered to be the least important. In the deposit classification 

model, Y (0.119) is the most important, followed by Eu (0.097), 
Hf (0.067), U (0.067), etc. There are also some elements that are 
negative values, and they are usually considered to have a nega-
tive impact on the model, with Gd (–0.006) having the biggest 
negative impact.

To explore the relationship between the number of elements 
and the model scores, we first selected the top two most important 

Table 2. Comparison of different data preprocessing strategies and 
machine learning algorithms

Algorithm
 Data preprocessing strategies Performance 

  Missing values Data Class  Accuracy F1- Recall
  filling standardization imbalance   score

Igneous rocks classification model (19 features/elements)
Decision  knn-classification z-score smote  0.803 0.833 0.872
   Tree  knn-classification log smote  0.798 0.825 0.861
  knn-classification minmax smote  0.790 0.821 0.861
  iterative z-score smote  0.654 0.661 0.671
  iterative minmax smote  0.623 0.655 0.718
  iterative log smote  0.613 0.643 0.693
XGBoost  knn-classification minmax smote  0.870 0.892 0.917
  knn-classification z-score smote  0.868 0.889 0.914
  knn-classification log smote  0.854 0.880 0.913
  iterative minmax smote  0.682 0.713 0.774
  iterative z-score smote  0.689 0.725 0.781
  iterative log smote  0.742 0.770 0.808
Random  knn-classification minmax smote  0.928 0.902 0.879
   Forest  knn-classification log smote  0.934 0.902 0.876
  knn-classification z-score smote  0.947 0.931 0.917
  iterative z-score smote  0.805 0.810 0.819
  iterative log smote  0.829 0.834 0.842
  iterative minmax smote  0.828 0.836 0.847
        

Ore deposits classification model (17 features/elements)
Decision  knn-classification minmax smote  0.749 0.762 0.780
   Tree  knn-classification z-score smote  0.742 0.759 0.783
  knn-classification log smote  0.725 0.728 0.749
  iterative minmax smote  0.533 0.567 0.639
  iterative z-score smote  0.575 0.594 0.642
  iterative log smote  0.591 0.595 0.601
XGBoost  knn-classification minmax smote  0.819 0.827 0.839
  knn-classification log smote  0.807 0.813 0.824
  knn-classification z-score smote  0.799 0.809 0.827
  iterative minmax smote  0.611 0.662 0.773
  iterative z-score smote  0.634 0.685 0.792
  iterative log smote  0.654 0.698 0.785
Random  knn-classification z-score smote  0.856 0.872 0.894
Forest  knn-classification log smote  0.838 0.855 0.878
  knn-classification minmax smote  0.807 0.830 0.866
  iterative minmax smote  0.722 0.737 0.790
  iterative z-score smote  0.704 0.734 0.799
  iterative log smote  0.733 0.730 0.758

Table 3 Optimal parameter tuning results for Random Forests

Parameters
  Igneous rocks Ore deposits

  classification model classification model
  19 features 8 features 17 features 8 features
max_depth  100 44 100 13
max_features  0.444 0.572 0.551 0.649
min_samples_leaf 1 1 1 1
min_samples_split 2 2 2 2
n_estimators  300 300 300 163
F1-score  0.963 0.914 0.890 0.877

Table 4. Results of Random Forest algorithm with fivefold cross 
validation

Database name Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold_avg
Igneous rocks 0.9369 0.9611 0.9501 0.9431 0.9427 0.9468
Ore deposits 0.9089 0.8988 0.9100 0.9187 0.8731 0.9019

0.938 0.064 0.087 0.093 0.02 0.125

0 0.882 0 0.016 0.02 0

0 0 0.87 0 0 0

0.059 0.036 0.043 0.891 0 0.062

0 0.009 0 0 0.959 0.062

0.004 0.009 0 0 0 0.75
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Figure 5. Confusion matrix plot for the testing set using Random 
Forest. (a) Data from Igneous Rocks Database. (b) Data from Ore Deposit 
Database. The data in the table represents the precision of prediction (Eq. 
7). Each column in the matrix represents the predicted category, while 
each row represents the true category of the data. The sum of the scores 
in each column is 1. (Color online.)
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2006). Zr/Hf (Claiborne et al. 2006), Hf/Y (Gagnevin et al. 2010), 
Th/U (Claiborne et al. 2006; Gagnevin et al. 2010; Kirkland et 
al. 2015) and Nb/Ta (Gudelius et al. 2020) ratios also evaluate 
the degree of magma fractionation. Cerium and Eu have variable 
valences and thus estimate magma oxygen fugacity (Ballard et 
al. 2002; Loader et al. 2017; Zhong et al. 2019). Europium and Y 
in zircon may also reflect water content in the magma (Triantaf-
yllou et al. 2023). Oxygen fugacity and water content track the 
migration and potential enrichment of metals in the crust (Dilles 
et al. 2015; Lu et al. 2016). Hence, the most important elements 
selected by the PFI algorithm appear to be geologically significant 
with established relationships to both magmatic evolution and ore 
deposit formation.

The classification models for igneous rocks and ore deposits, 
discussed above, based on the eight most important elements, is 
provided via a web page front-end http://60.205.170.161:8001/. 
Users can select the most appropriate model for classification and 
upload their zircon compositional data. The model outputs the 
counts per classification (also expressed as a percentage of the 
total number of samples). A spreadsheet of detailed results can 
be downloaded that appends the classification onto the input file.

Case study of igneous rocks and ore deposits classification 
model

Igneous rocks in Yilgarn Craton, Western Australia. To 
explore the performance of the machine learning model, we apply 
it to a case study on magmatic zircon crystals from the Archean 
Yilgarn Craton of Western Australia. The Yilgarn Craton has an 
exposed area of about 65 × 104 km2 and is well endowed with a 
range of different mineral systems (Cassidy et al. 2006) (Fig. 8a). 
We consider a compilation of zircon geochemical data collected 
by LA-ICP-MS which is paired with whole rock geochemistry 
(Lu et al. 2019). This data set has been used to evaluate the zircon 
trace element content of barren granitic rocks to that parageneti-
cally associated with mineralization. Zircon grains were filtered 
for U-Pb isotopic discordance as a means to exclude those that 
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Figure 6. Ranking of feature importance using Random Forest. (a) 
Based on Igneous Rocks Database. (b) Based on Ore Deposit Database. 
(Color online.)
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Figure 7. Trend curve of F1-score with increasing number of features 
using Random Forest. Element symbols are listed in descending order 
of feature importance in the table. Colored element symbols indicate 
that they are decisive for classification and can be used to simplify the 
model. (Color online.)

elements and then added elements in descending order (Fig. 7). 
The F1-score of the rock classification model increases from 0.612 
to 0.902, while the deposit classification model increased from 
0.478 to 0.851 until the eighth element was added. This is very 
close to the scores obtained with all elements in the Igneous Rock 
Database (0.914) and Ore Deposit Database (0.868). Therefore, 
we consider it acceptable to use the most important eight elements 
for the igneous rock or ore deposit classification model. Such ap-
proach aids in the decision of what trace elements to analyze in 
zircon when the goal is classifying the igneous rock source or ore 
deposits host, saving analytical time and costs, but arguably most 
importantly, allowing element count times to be optimized to those 
most powerful elements for classification. From an algorithmic 
standpoint, using fewer elements in the final model will reduce 
its susceptibility to overfitting the training set (i.e., increases the 
signal-to-noise ratio). We additionally performed Bayesian optimal 
tuning for the simplified model (Table 3), which yielded F1-scores 
for igneous rock and deposit classification models of 0.919 and 
0.891, respectively.

Both the simplified igneous rock and ore deposit classification 
models contain Hf, Th, U, Eu, Ti, and Lu. The igneous rock model 
also contains Nb and Ta, whereas the ore deposit model also con-
tains Y and Ce. From a geological perspective, the contents of Hf, 
Y, U, Th, Nb, Ta, and Lu are known to correlate with the degree 
of magmatic evolution. Fluorine is typically abundant in evolved 
magmas and zircon crystals generated in such fluids (Breiter et al. 

http://60.205.170.161:8001/
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would have seen secondary alteration effects. The whole rock 
data set has been filtered to include only samples with loss on 
ignition values <63 wt% and Al2O3 <20 wt%. This filtering aims 
to exclude samples that are strongly altered or are plagioclase 
cumulates. Some samples were also excluded due to the effects 
of metamorphism. Whole-rock geochemical and zircon trace 
element data for 30 rocks in the Yilgarn Craton (https://github.
com/ZihaoWen123/geology_class) reflect primary compositions 
and are available to test the classification methods (see Lu et al. 
2019). First, we classified these rocks using traditional methods 
based on whole-rock geochemistry: 12 are “granodiorite,” and 
18 are “granite” fields according to the TAS diagram (Le Maitre 
2002), indicating that they are mainly intermediate-acid to acid 
rocks. We used the zircon trace elements from these 30 samples 
in the classification model and list the results with the whole-rock 
geochemical classification results in Table 5 for comparison. The 
classification model indicates the rock type predicted by each zir-
con trace element analysis and can be expressed as the proportion 
of each rock type classified within any sample, as shown in the pie 
chart in Figure 8b. It is clear that the zircon-based IR classification 
is dominant in the whole rock defined “granodiorite” field, and 
the AR classification is elevated in those defined by whole rock 
as “granite” (Fig. 8b). As with the classification results of the 
whole-rock geochemical measurements, the lithology classifica-
tion model based on zircon trace elements correctly predicts that 
these igneous rocks are mainly intermediate-acid in composition. 
An obvious application of this approach is to detrital zircon grains 
that are not in association with their primary magmatic source 
rock. The zircon classification model may enable a prediction on 
the most likely source lithology.

Ore deposits in Sanjiang region, southwest China. The 
Sanjiang metallogenic belt, located in southwestern China 
(Fig. 9a), is one of the most important polymetallic belts in 
China which includes several porphyry copper-gold and poly-
metallic skarn deposits (Hou et al. 2007; Xu et al. 2021). We 
compiled zircon compositional data (available on https://github.
com/ZihaoWen123/geology_class) from the Yangla skarn-type 
polymetallic deposit, the Pulang, and the Beiya porphyry-type 
Cu-Au deposits (Fig. 9b). Zircon compositions were used to 
determine the deposit type following the deposit classification 
model discussed above. The Yangla polymetallic skarn deposit 
formed in the Triassic-Early Jurassic (Wang et al. 2022). It was 
traditionally considered a copper deposit, but a high-grade tung-
sten ore in this deposit was recently identified (Yang et al. 2023). 
Wang et al. (2022) studied a quartz diorite from this deposit. In 
Figure 9c, the deposit classification model gives predictions for 
three zircon populations from this quartz diorite. Skarn-type 
polymetallic deposits are the dominant classification, consistent 
with the known situation. In the same area, Pulang and Beiya are 
two super large porphyry-type Cu and Au deposits formed in the 
Early Jurassic and Eocene, respectively (Fig. 9b) (Meng et al. 
2018). Zircon compositional data from Meng et al. (2018) was 
used in classification. Three zircon populations of the Pulang 
deposit and five of the Beiya deposit yielded classifications 
dominated by porphyry-type Cu-Au-Mo deposits (Fig. 9c). It is 
notable that porphyry Cu-Au-Mo deposits and skarn-type poly-
metallic deposits always ranked within the top two for number 
of classifications. In summary, the zircon composition-based ore 
deposit classification model seems to offer a useful indication of 
the potential mineralization type within an area.
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Figure 8. Case study of igneous rocks in 
Yilgarn Craton, Western Australia. (a) Geological 
map of Yilgarn Craton with sampling points. (b) 
The predicted results of zircon compositions 
on rock samples; the division of “granite” 
and “granodiorite” is based on the TAS rock 
classification proposed by Le Maitre (2002). 
(Color online.)
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Table 5. Case Study—Application of zircon classifier to igneous rocks in Yilgarn Craton

Rock Latitude and SiO2 (%)  TAS classification results 
Prediction results of zircon composition

 
Data source

number longitude content of whole-rock  
  of rocks geochemistry Pegmatite AR IR BR Carbonatite Kimberlite
1 –26.02°S, 120.32°E 73.7 granite 2% 16% 58% 24%   Nelson (1998)
2 –27.86°S, 123.23°E 72.52 granite  28% 56% 16%   Wingate et al. (2011)
3 –27.76°S, 123.37°E 73.26 granite 4.3% 8.7% 76.1% 10.9%   Wingate et al. (2011)
4 –27.48°S, 121.02°E 68.46 granodiorite  8.3% 81.2% 10.4%   Nelson (1997)
5 –27.89°S, 122.01°E 70.21 granodiorite  13% 73% 13.3%   Nelson (1997)
6 –27.89°S, 121.88°E 72.43 granite 2% 10% 78% 8%  2% Nelson (1997)
7 –27.35°S, 123.11°E 73.79 granite 5.9% 14.7% 58.8% 17.6%  2.90% Wingate et al. (2010)
8 –27.95°S, 121.37°E 69.18 granodiorite  16% 78% 6%   Nelson (1997)
9 –28.77°S, 123.03°E 70.43 granodiorite 8% 22% 40% 26%  4% Wingate et al. (2010)
10 –27.53°S, 119.5°E 73.99 granite 2% 28% 58% 12%   Wingate and Bodorkos (2007)
11 –27.43°S, 119.6°E 73.74 granite 3.7% 29.6% 40.7% 25.9%   Wingate and Bodorkos (2007)
12 –26.75°S, 118.3°E 63.84 granodiorite  4% 94% 2%   Wingate et al. (2008)
13 –28.51°S, 123.02°E 73.8 granite 4% 48% 38% 10%   Wingate et al. (2011)
14 –27.41°S, 117.7°E 65.63 granodiorite  4% 92% 2% 2%  Wingate et al. (2011)
15 –28.21°S, 119.86°E 67.87 granodiorite  14.1% 84.7% 1.20%   Wingate et al. (2012)
16 –28.44°S, 118.62°E 72.73 granite 2% 24% 42% 32%   Wingate et al. (2015)
17 –28.05°S, 117.73°E 71.6 granite 2% 56% 26% 16%   Wingate et al. (2014)
18 –29.02°S, 123.05°E 65.81 granodiorite  2% 98%    Wingate et al. (2010)
19 –28.19°S, 123.67°E 66.54 granodiorite  100.0%     Wingate et al. (2011)
20 –27.99°S, 123.43°E 73.06 granite  8% 76% 16%   Wingate et al. (2009)
21 –28.19°S, 123.64°E 69.15 granodiorite  28% 66% 6%   Wingate et al. (2011)
22 –28.61°S, 116.85°E 72.3 granite  60.0% 37% 2.90%   Wingate et al. (2015)
23 –29.38°S, 119.17°E 72.21 granite  13.3% 73.3% 13.30%   Nelson (2001)
24 –27.26°S, 119.96°E 72.95 granite  34% 60% 6%   Love et al. (2006)
25 –26.91°S, 119.27°E 68.45 granodiorite  8% 88% 4%   Wingate and Bodorkos (2007)
26 –31.03°S, 116.62°E 74.47 granite  14.1% 84.7% 1.2%   Wingate et al. (2018)
27 –31.03°S, 116.63°E 72.38 granite 1.40% 41.7% 55.6% 1.4%   Wingate et al. (2018)
28 –30.92°S, 116.65°E 74.02 granite  60.0% 37.1% 2.90%   Wingate et al. (2018)
29 –32.76°S, 116.38°E 73.89 granite 1.10% 96.7% 1.1% 1.10%   McNaughton N. unpublisheda

30 –32.76°S, 116.36°E 64.04 granodiorite  5.9% 90.6% 3.5%   McNaughton N. unpublisheda

Notes: AR = acid rocks; IR = intermediate rocks; BR = basic rocks. a Cited in Lu et al. (2019). 

Figure 9. Case study of ore deposits in Sanjiang region, southwest China. (a) Geological map showing the location of Sanjiang region (Zhu 
et al. 2015). (b) Tectonic framework of the Sanjiang region in southwest China showing the major terranes, suture zones, arc volcanic belts, and 
locations of the Yangla polymetallic skarn deposit, Pulang Cu porphyry deposit and Beiya Au-Cu porphyry deposit (Zhu et al. 2015). (c) Pie chart 
of the classification results of ore deposits based on zircon populations. Zircon samples 45-R1, 3250-41Lb1, 3250-41Lb1 were selected from 
quartz diorite at the Yangla deposit (Wang et al. 2022); sample PL01 and PL02 were selected from a quartz diorite porphyry, and sample PL03 
was selected from a quartz monzonite porphyry at the Pulang deposit (Meng et al. 2018); sample BY01 and BY04 were selected from a quartz 
monzonite porphyry and BY02, BY03, and BY05 were selected from quartz syenite porphyry at the Beiya deposit (Meng et al. 2018). (Color online.)
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Concluding remarks
Here we show that traditional methods of classifying magmatic 

rocks and deposits using zircon trace elements are inefficient at 
best and at worst can lead to misclassification. Random Forest 
models are an efficient multi-dimensional computation algorithm, 
although such classification results are difficult to show in the form 
of a flow chart. Many Decision Trees are computed independently, 
which can save computation time. Even if we use only the most 
important eight elements to predict igneous rock and ore deposit 
types, this limited compositional information still enables good 
classification. A case study of igneous rocks in the Yilgarn Craton 
and ore deposits in the Sanjiang region demonstrates that the zircon 
classifier has its own unique advantages in terms of ease of use 
and accuracy. It offers significant potential for tracing the origin 
of detrital zircon grains and enhancing exploration search space 
by indicating metallogenic fluids.

Implications
Zircon is a stable mineral that can preserve primary geologi-

cal information, and previous studies have confirmed that trace 
elements in this mineral are effective for tracing the origin of 
both igneous rocks and ore deposits. With large compilations of 
trace element data in zircon, machine learning offers an attractive 
proposition to classifying igneous rock and ore deposit sources 
based on grain chemistry. Here we collect 7173 zircon chemical 
data from 11 different igneous rock types and 3831 analyses of 5 
deposit types worldwide. Based on this computational approach, 
we identify the eight most important zircon trace elements that 
influence zircon classification in igneous rocks and ore deposits. 
We then build classification models for both igneous rocks and 
ore deposits and validate their reliability. In addition, a web page 
portal (http://60.205.170.161:8001/) has been developed for the 
two (igneous/deposit) classification models. The approach is 
applied to a case study of zircon from known rock types in 30 
igneous plutons from Western Australia. Classification models of 
igneous rocks and ore deposits using zircon chemical data will be 
clearly useful in tracing the provenance of detrital zircon grains 
and in reducing exploration risk by increasing the deposit halo in 
detrital zircon sampling surveys.
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