CONTENTS

PREFACE TO THE SECOND EDITION

PREFACE TO THE FIRST EDITION

1 THE ORE MICROSCOPE

1.1 Introduction / 1
1.2 Components of the Ore Microscope / 2
1.3 Accessories / 13
References / 15

2 THE PREPARATION OF SAMPLES FOR ORE MICROSCOPY

2.1 Introduction / 17
2.2 Preparation of Polished Sections / 18
2.3 Grinding and Polishing Equipment / 27
2.4 Preparation of Grain Mounts and Mounts for Specialist Analytical Methods / 30
2.5 Preparation of Polished (and Doubly Polished) Thin Sections / 31
2.6 Electrolyte Polishing and Etching Techniques / 34
2.7 How to Achieve High-Quality Polished Surfaces / 34
References / 37
3 MINERAL IDENTIFICATION—QUALITATIVE METHODS

3.1 Introduction / 39
3.2 Qualitative Optical Properties / 40
3.3 Qualitative Examination of Hardness / 45
3.4 Structural and Morphological Properties / 48
3.5 Other Aids to Identification (Phase Equilibria, Mineral Assemblages, Characteristic Textures, and Ancillary Techniques) / 52
3.6 Concluding Statement / 53
References / 53
Bibliography / 54

4 REFLECTED LIGHT OPTICS

4.1 Introduction / 55
4.2 Reflection of Linearly (or “Plane”) Polarized Light / 61
4.3 Reflection Between Crossed Polars / 69
4.4 Concluding Remarks / 76
References / 77

5 QUANTITATIVE METHODS—REFLECTANCE MEASUREMENT

5.1 Introduction / 78
5.2 Measurement Techniques / 82
5.3 Applications to Mineral Identification / 90
5.4 Applications to the Compositional Characterization of Minerals / 93
5.5 Quantitative Color / 95
5.6 The Correlation of Electronic Structure with Reflectance Variation / 101
5.7 Concluding Remarks / 103
References / 104

6 QUANTITATIVE METHODS—MICROINDENTATION HARDNESS

6.1 Introduction / 106
6.2 Vickers Hardness Measurement / 107
6.3 Shapes of Hardness Microindentations / 110
6.4 Factors Affecting Microindentation Hardness Values of Minerals / 112
6.5 Concluding Remarks / 117
References / 119
7 ORE MINERAL TEXTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>120</td>
</tr>
<tr>
<td>7.2 Primary Textures of Ore Minerals Formed from Melts</td>
<td>123</td>
</tr>
<tr>
<td>7.3 Primary Textures of Open-Space Deposition</td>
<td>123</td>
</tr>
<tr>
<td>7.4 Secondary Textures Resulting from Replacement (Including Weathering)</td>
<td>129</td>
</tr>
<tr>
<td>7.5 Secondary Textures Resulting from Cooling</td>
<td>138</td>
</tr>
<tr>
<td>7.6 Secondary Textures Resulting from Deformation</td>
<td>145</td>
</tr>
<tr>
<td>7.7 Secondary Textures Resulting from Annealing and Metamorphic Crystal Growth</td>
<td>153</td>
</tr>
<tr>
<td>7.8 Textures of Placer Grains</td>
<td>157</td>
</tr>
<tr>
<td>7.9 Special Textures</td>
<td>160</td>
</tr>
<tr>
<td>7.10 Concluding Statement</td>
<td>161</td>
</tr>
<tr>
<td>References</td>
<td>162</td>
</tr>
</tbody>
</table>

8 PARAGENESIS, FORMATION CONDITIONS, AND FLUID INCLUSION GEOTHERMOMETRY OF ORES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>164</td>
</tr>
<tr>
<td>8.2 Paragenetic Studies</td>
<td>165</td>
</tr>
<tr>
<td>8.3 Examples of Paragenetic Studies</td>
<td>175</td>
</tr>
<tr>
<td>8.4 Ore Formation Conditions and the Application of Phase Equilibria Data</td>
<td>188</td>
</tr>
<tr>
<td>8.5 Fluid Inclusion Studies</td>
<td>193</td>
</tr>
<tr>
<td>References</td>
<td>205</td>
</tr>
</tbody>
</table>

9 ORE MINERAL ASSEMBLAGES OCCURRING IN IGNEOUS ROCKS AND VEIN DEPOSITS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>209</td>
</tr>
<tr>
<td>9.2 Chromium Ores Associated with Mafic and Ultramafic Igneous Rocks</td>
<td>210</td>
</tr>
<tr>
<td>9.3 Iron-Nickel-Copper Sulfide Ores Associated with Mafic and Ultramafic Igneous Rocks</td>
<td>215</td>
</tr>
<tr>
<td>9.4 Iron-Titanium Oxides Associated with Igneous Rocks</td>
<td>220</td>
</tr>
<tr>
<td>9.5 Copper/Molybdenum Sulfides Associated with Porphyritic Intrusive Igneous Rocks ("Porphyry Copper/Molybdenum" Deposits)</td>
<td>226</td>
</tr>
<tr>
<td>9.6 Copper-Lead-Zinc-Silver Assemblages in Vein Deposits</td>
<td>232</td>
</tr>
<tr>
<td>9.7 The Silver-Bismuth-Cobalt-Nickel-Arsenic (-Uranium) Vein Ores</td>
<td>235</td>
</tr>
</tbody>
</table>
CONTENTS

9.8 Tin-Tungsten-Bismuth Assemblages in Vein Deposits / 241
9.9 Gold Vein and Related Mineralization / 243
9.10 Arsenic-, Antimony-, or Mercury-Bearing Base-Metal Vein Deposits / 247
References / 253
Bibliography / 255

10 ORE MINERAL ASSEMBLAGES OCCURRING IN SEDIMENTARY, VOLCANIC, METAMORPHIC, AND EXTRATERRESTRIAL ENVIRONMENTS 259

10.1 Introduction / 259
10.2 Iron and Manganese Ores in Sedimentary Environments / 260
10.3 Opaque Minerals in Coal / 271
10.4 Uranium-Vanadium-Copper Ores Associated with Sandstones and Unconformity-Type Uranium Deposits / 275
10.5 Modern Placer Deposits / 281
10.6 Gold-Uranium Ores in Ancient Conglomerates / 284
10.7 Lead-Zinc Deposits in Carbonate Rocks and Other Sediments / 288
10.8 Stratiform Base-Metal Sulfide Ores in Sedimentary Rocks / 294
10.9 Copper-Iron-Zinc Assemblages in Volcanic Environments / 297
10.10 Opaque Minerals in Metamorphosed Massive Sulfides / 303
10.11 Skarn Deposits / 309
10.12 Extraterrestrial Materials: Meteorites and Lunar Rocks / 313
References / 319
Suggested Readings / 322

11 APPLICATIONS OF ORE MICROSCOPY IN MINERAL TECHNOLOGY 326

11.1 Introduction / 326
11.2 Mineral Identification in Mineral Beneficiation / 329
11.3 Ore Textures in Mineral Beneficiation / 333
11.4 Examples of Applications of Ore Microscopy in Mineral Beneficiation / 337
CONTENTS

11.5 The Study of Mattes, Slags, Ashes, Sinter, and Other Smelter and Incinerator Products / 343
11.6 Concluding Remarks / 348
References / 349

APPENDIX 1 TABLE OF DIAGNOSTIC PROPERTIES OF THE COMMON ORE MINERALS 351

APPENDIX 2 CHARACTERISTICS OF COMMON ORE MINERALS 405

APPENDIX 3 ANCILLARY TECHNIQUES 411
 A3.1 X-Ray Powder Diffraction / 411
 A3.2 Electron Probe Microanalysis / 412
 A3.3 Microbeam Methods of Trace Element (and Isotopic) Analysis / 415
 References / 417

AUTHOR INDEX 419

SUBJECT INDEX 424